
PC-BASIC
documentation

Version 2.0.7

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

1. PC-BASIC 2.0.7
A free, cross-platform emulator for the GW-BASIC family of interpreters.

PC-BASIC is a free, cross-platform interpreter for GW-BASIC, Advanced BASIC (BASICA),
PCjr Cartridge Basic and Tandy 1000 GWBASIC. It interprets these BASIC dialects with a
high degree of accuracy, aiming for bug-for-bug compatibility. PC-BASIC emulates the most
common video and audio hardware on which these BASICs used to run. PC-BASIC runs
plain-text, tokenised and protected .BAS files. It implements floating-point arithmetic in the
Microsoft Binary Format (MBF) and can therefore read and write binary data files created by
GW-BASIC.

This is the documentation for PC-BASIC 2.0.7, last updated 2023-04-02 20:43:10.
It consists of the following documents:

• Quick Start Guide, the essentials needed to get started
• User's Guide, in-depth guide to using the emulator
• Configuration Guide, settings and options
• Language Guide, overview of the BASIC language by topic
• Language Reference, comprehensive reference to BASIC
• Technical Reference, file formats and internals
• Developer's Guide, using PC-BASIC as a Python module

2 PC-BASIC

Table of Contents

PC-BASIC 2.0.7 .. 2

Quick Start Guide... 14

Installation.. 15

BASIC survival kit .. 16

Program location.. 17

External resources... 18

User's guide ... 19

The working environment .. 20

Special keys... 21

Keyboard shortcuts .. 24

Alternative keys ... 25

Clipboard operations.. 25

Emulator control keys .. 25

Compatibility .. 26

Programs and files ... 27

Accessing your drives.. 29

Compatible BASIC files ... 30

Packages ... 31

Cassette tapes... 31

Security .. 32

Connecting to peripherals .. 33

Printing... 33

Serial and parallel ports ... 34

Changing the interface... 35

Emulation targets ... 36

Codepages .. 38

Fonts .. 41

Table of Contents 3

Redirecting I/O... 42

Command-line interface... 42

Text-based interface .. 43

Configuration guide... 44

Changing settings .. 45

Synopsis .. 47

Positional arguments ... 48

Options .. 49

Examples ... 61

Language guide ... 63

Working with programs .. 64

Control flow.. 65

Arrays and variables .. 68

Type conversion .. 69

String operations.. 70

Text and the screen ... 71

The printer ... 72

Keyboard input... 73

Function-key macros ... 74

Calculations and maths ... 75

Mathematical functions .. 75

Random numbers .. 75

Devices and files.. 76

File operations ... 76

Devices .. 76

Graphics .. 79

Sound .. 80

Joystick and pen .. 81

Disks and DOS .. 82

Serial communications... 83

4 PC-BASIC

Event handling ... 84

Error handling .. 85

User-defined functions... 86

Date and time .. 87

Including data in a program ... 88

Memory and machine ports ... 89

Features not yet implemented ... 90

Unsupported features .. 91

Language reference... 92

Metasyntax .. 93

Definitions .. 94

Literals ... 95

Variables.. 97

Types and sigils ... 97

Arrays... 98

Conversions... 98

Operators ... 99

Order of precedence.. 99

Mathematical operators ... 100

Relational operators... 101

Bitwise operators ... 101

String operators ... 102

Functions ... 104

ABS.. 104

ASC.. 104

ATN.. 105

CDBL .. 105

CHR$.. 105

CINT .. 106

COS.. 106

Table of Contents 5

CSNG .. 106

CSRLIN... 107

CVI.. 107

CVS.. 107

CVD.. 108

DATE$ (function) .. 108

ENVIRON$... 109

EOF.. 109

ERDEV .. 110

ERDEV$... 110

ERL.. 110

ERR.. 110

EXP.. 111

EXTERR... 111

FIX.. 112

FN ... 112

FRE.. 113

HEX$.. 113

INKEY$... 113

INP.. 114

INPUT$... 115

INSTR .. 116

INT.. 116

IOCTL$... 117

LEFT$.. 117

LEN.. 118

LOC.. 119

LOF.. 120

LOG.. 121

LPOS .. 121

6 PC-BASIC

MID$ (function) .. 122

MKD$.. 122

MKI$.. 122

MKS$.. 123

OCT$.. 123

PEEK .. 124

PEN (function).. 125

PLAY (function) .. 126

PMAP .. 127

POINT (current coordinate) .. 128

POINT (pixel attribute) ... 129

POS.. 129

RIGHT$... 130

RND.. 131

SCREEN (function)... 132

SGN.. 132

SIN.. 133

SPACE$... 133

SQR.. 134

STICK .. 134

STR$.. 135

STRIG (function) .. 135

STRING$... 136

TAN.. 136

TIME$ (function) .. 137

TIMER (function) .. 137

USR.. 137

VAL.. 138

VARPTR... 138

VARPTR$... 139

Table of Contents 7

Statements... 140

AUTO .. 140

BEEP .. 141

BEEP (switch)... 141

BLOAD .. 141

BSAVE .. 142

CALL and CALLS ... 142

CHAIN .. 143

CHDIR .. 144

CIRCLE... 145

CLEAR .. 146

CLOSE .. 147

CLS.. 148

COLOR (text mode) ... 149

COLOR (SCREEN 1) ... 153

COLOR (SCREEN 3—9).. 154

COM.. 156

COMMON... 157

CONT .. 158

DATA .. 159

DATE$ (statement) ... 160

DEF FN... 161

DEFINT, DEFDBL, DEFSNG, DEFSTR ... 162

DEF SEG ... 162

DEF USR ... 163

DELETE... 163

DIM.. 164

DRAW .. 165

EDIT .. 167

ELSE .. 167

8 PC-BASIC

END.. 167

ENVIRON ... 168

ERASE .. 168

ERROR .. 169

FIELD .. 170

FILES .. 171

FOR.. 172

GET (files) .. 173

GET (communications) .. 174

GET (graphics)... 175

GOSUB .. 176

GOTO .. 177

IF ... 178

INPUT (console) .. 179

INPUT (files) .. 180

IOCTL .. 181

KEY (macro list) ... 181

KEY (macro definition) ... 182

KEY (event switch)... 183

KEY (event definition) .. 185

KILL .. 186

LCOPY .. 187

LET.. 187

LINE .. 188

LINE INPUT (console).. 189

LINE INPUT (files).. 190

LIST .. 191

LLIST .. 192

LOAD .. 193

LOCATE... 194

Table of Contents 9

LOCK .. 195

LPRINT... 196

LSET .. 196

MERGE .. 197

MID$ (statement)... 198

MKDIR .. 198

MOTOR .. 199

NAME .. 199

NEW.. 200

NEXT .. 200

NOISE .. 201

ON (calculated jump) ... 202

ON (event trapping) ... 203

ON ERROR ... 204

OPEN .. 205

OPTION BASE .. 212

OUT.. 213

PAINT .. 214

PALETTE ... 217

PALETTE USING .. 218

PCOPY .. 218

PEN (statement)... 219

PLAY (event switch)... 219

PLAY (music statement) .. 220

POKE .. 223

PSET and PRESET.. 224

PRINT and LPRINT .. 225

PUT (files) .. 228

PUT (communications) .. 229

PUT (graphics)... 230

10 PC-BASIC

RANDOMIZE ... 231

READ .. 231

REM.. 232

RENUM .. 233

RESET .. 234

RESTORE ... 234

RESUME... 234

RETURN... 235

RMDIR .. 235

RSET .. 236

RUN.. 237

SAVE .. 238

SCREEN (statement) ... 239

SHELL .. 242

SOUND (tone).. 243

SOUND (switch)... 244

STOP .. 244

STRIG (switch)... 244

STRIG (event switch) ... 245

SWAP .. 246

SYSTEM... 246

TERM .. 246

TIME$ (statement) ... 247

TIMER (statement) ... 247

TRON and TROFF ... 247

UNLOCK... 248

VIEW .. 249

VIEW PRINT.. 249

WAIT .. 250

WEND .. 250

Table of Contents 11

WHILE .. 251

WIDTH (console) .. 252

WIDTH (devices and files) .. 253

WINDOW... 254

WRITE .. 254

Errors and Messages... 255

Errors ... 255

Other messages .. 261

Technical reference ... 263

Tokenised file format ... 264

Tokenised BASIC .. 264

Microsoft Binary Format .. 267

Protected file format... 269

BSAVE file format ... 270

Cassette file format .. 271

Emulator file formats .. 273

HEX font file format.. 273

UCP code page file format... 273

CAS tape file format... 274

Character codes .. 275

ASCII.. 275

Codepage 437 ... 275

Keycodes ... 277

Scancodes .. 277

e-ASCII codes.. 281

Memory model ... 285

Overview.. 285

Data segment .. 285

Developer's guide .. 287

Session API ... 288

12 PC-BASIC

Extensions ... 290

Examples ... 291

Acknowledgements ... 292

Contributors ... 293

Shoulders of Giants ... 294

Fond memories .. 295

Technical Documentation .. 296

Fonts .. 298

Unicode-codepage mappings .. 299

Bibliography ... 300

Development tools ... 301

Emulators... 302

Licences ... 303

PC-BASIC interpreter .. 304

PC-BASIC documentation ... 305

Table of Contents 13

2. Quick Start Guide
This quick start guide covers installation and elementary use of PC-BASIC. For more
information, please refer to the PC-BASIC documentation.

If you find bugs, please open an issue on GitHub. It would be most helpful if you could
include a short bit of BASIC code that triggers the bug.

14 PC-BASIC

https://github.com/robhagemans/pcbasic/issues

2.1. Installation
PC-BASIC desktop installers for Windows, Mac, and Linux can be downloaded from GitHub.

Python users can obtain the PC-BASIC package from PyPI through pip3 install pcbasic .

Installation

Quick Start Guide 15

https://github.com/robhagemans/pcbasic/releases
https://pypi.org/project/pcbasic/

2.2. BASIC survival kit
PC-BASIC has a 1980s-style interface operated by executing typed commands. There is no
menu, nor are there any of the visual clues that we've come to expect of modern software.

A few essential commands to help you get around:

Command Effect
FILES show current working directory and its contents
LOAD "PROGRAM" loads the program file named PROGRAM.BAS into memory
LIST displays the BASIC code of the current program
RUN starts the current program
SAVE "PROGRAM",A saves the current program to a text file named PROGRAM.BAS
NEW immediately deletes the current program from memory
SYSTEM exits PC-BASIC immediately, discarding any unsaved program

Use one of the key combinations Ctrl+Break , Ctrl+Scroll Lock , Ctrl+C or F12+B to
interrupt a running program.

16 PC-BASIC

2.3. Program location
If started through the start-menu shortcut, PC-BASIC looks for programs in the shortcut's
start-in folder.

• On Windows, this is your Documents folder by default.
• On Mac and Linux this is your home directory ~/ by default.

If started from the command prompt, PC-BASIC looks for programs in the current working
directory.

See the documentation on accessing your drives for more information.

Program location

Quick Start Guide 17

2.4. External resources
See the collection of GW-BASIC programs and tutorials.

18 PC-BASIC

https://github.com/robhagemans/hoard-of-gwbasic

3. User's guide

External resources

User's guide 19

3.1. The working environment
The first thing you'll see when starting PC-BASIC is the working environment. Like GW-
BASIC, but unlike practically all modern compilers and interpreters, PC-BASIC's working
environment serves both as a development environment and as a canvas on which to
execute BASIC commands directly. With a few exceptions, practically all commands that can
be run in the working environment can be used in a program, and vice versa.

The default PC-BASIC screen has 25 rows and 80 columns. The 25th row is used by PC-
BASIC to show keyboard shortcuts, which means you can't use it to type on. In some video
modes, there are only 40 or 20 columns.

Logical lines exceed the width of the physical row: if you keep typing beyond the screen
width, the text will wrap to the next line but PC-BASIC will still consider it part of the same
line. A logical line can be at most 255 characters long; if you type more than 255 characters,
it will ignore the remainder. A line can also be wrapped by a line-feed, entered with
Ctrl + Enter .

If you press Enter , PC-BASIC will attempt to execute the logical line on which the cursor is
placed as a command. When the command is executed correctly, PC-BASIC will display the
prompt Ok . If there is an error, it will display an error message followed by Ok . If the line
starts with a number, it will be stored as a program line. No prompt is displayed.

20 PC-BASIC

Special keys
The following keys have a special effect in the working environment:

The working environment

User's guide 21

↑ or Ctrl + 6 Move the cursor up, except at the top row.
↓ or Ctrl + - Move the cursor down, except at row 24.
← or Ctrl +] Move the cursor left. The left edge of the screen wraps around,

except at the top row.
→ or Ctrl + / Move the cursor right. The right edge of the screen wraps around,

except at row 24.
Ctrl + ← or
Ctrl + B

Move to the first letter of the previous word. Words consist of
letters A—Z and figures 0—9.

Ctrl + → or
Ctrl + F

Move to the first letter of the next word.

Tab or Ctrl + I Move the cursor to the next tab stop. Tab stops are 8 columns
wide.

Backspace or
Ctrl + H

Delete the character left of the cursor, shift all further characters
on the logical line one position to the left and change the attributes
of those characters to the current attribute. At the left edge of the
screen, this does the same as Del .

Del or
Ctrl + Backspace

Delete the character at the cursor and shift all further characters
one position to the left, changing attributes to current.

Esc or Ctrl + [Delete the current logical line.
Ctrl + End or
Ctrl + E

Delete all characters from the cursor to the end of the logical line.

Ctrl + Break or
Ctrl + C or
Ctrl + Scroll Lock

Jump to the first column of the next line, without executing or
storing the line under the cursor.

Enter or Ctrl + M Execute or store the current logical line. The complete line on the
screen is considered part of the command, even if you did not
type it. A line starting with a number is stored as a program line.

End or Ctrl + N Move the cursor to the first position after the end of the logical
line.

Home or Ctrl + K Move the cursor to the top left of the screen.
Ctrl + Home or
Ctrl + L

Clear the screen and move the cursor to the top left of the screen.

Ctrl + Enter or
Ctrl + J

Move to the first column of the next line, connecting the two lines
into one logical line.

Ctrl + G Beep the speaker.
Pause or
Ctrl + Num Lock

Pause. Press another key to resume. The latter key press will not
be detected by BASIC.

22 PC-BASIC

Ctrl + Print Screen Toggle echoing screen output to the printer (or other device
attached to LPT1:).

Shift + Print Screen Print the screen.
Ins or Ctrl + R Toggle insert mode. In insert mode, characters are inserted rather

than overwritten at the current location. If insertion causes the line
to extend the physical screen width, the logical line extends onto
the next line. Arrow keys exit insert mode.

When a program is started, the commands in the program are followed until the program
quits and returns to direct mode or until user input is required. When a program is running, a
few keys have immediate effect:

Pause or
Ctrl + Num Lock

Pause execution. Press another key to resume.

Ctrl + Break or
Ctrl + Scroll Lock

Stop execution and return to direct mode. A Break message is
printed.

Ctrl + C If ctrl-c-break=True: stop execution and return to direct mode.
A Break message is printed.

If user input is required by the statements INPUT , LINE INPUT , or RANDOMIZE , most keys
have the same effect as in direct mode. The following keys have a different effect:

Ctrl + Break or Ctrl + C or
Ctrl + Scroll Lock

Stop execution and return to direct mode. A Break
message is printed.

Enter Finish input and return to the previous mode.

The working environment

User's guide 23

Keyboard shortcuts
The function keys and the alt key can be used as keyboard shortcuts for some keywords.
The default values for the function keys are:

F1 LIST
F2 RUN Enter

F3 LOAD"
F4 SAVE"
F5 CONT Enter

F6 ,"LPT1:" Enter

F7 TRON Enter

F8 TROFF Enter

F9 KEY Space

F10 SCREEN 0,0,0 Enter

The function key shortcuts can be redefined with the KEY statement. The shortcuts are
displayed at the bottom of the screen.

The following keywords can be entered with Alt +first letter. The Alt shortcuts cannot be
redefined.

AUTO BSAVE COLOR DELETE ELSE FOR
GOTO HEX$ INPUT KEY LOCATE MOTOR
NEXT OPEN PRINT RUN SCREEN THEN
USING VAL WIDTH XOR

24 PC-BASIC

/home/rob/Projects/basic-project/www/pcbasic/doc/2.0/SCREEN-statement

Alternative keys
In PC-BASIC, the F12 key can be used to enter special keys that are not present on some
keyboards.

F12 + B Ctrl + Break

F12 + P Pause

F12 + C Caps Lock

F12 + N Num Lock

F12 + S Scroll Lock

F12 + H Print Screen

The F12 key can also be used in combination with the regular number keys and arrow keys
to enter numbers from the numeric keypad. The F12 combinations are not present in GW-
BASIC.

Furthermore, as in GW-BASIC, the Alt key can be used to enter characters by their code
points (ASCII values). This is done by pressing the Alt key and typing the code point as a
decimal value on the numeric keypad, then releasing the Alt key.

Clipboard operations
Unlike in GW-BASIC, you can copy and paste text to the clipboard. This can be done with
the mouse or with the F11 key.

Operating the clipboard with the mouse works in the style of X11: Left button is select and
copy; middle button is paste.

The following keyboard combinations also operate the clipboard:

F11 + ↑ ↓ ← → Select a screen region.
F11 + A Select all.
F11 + C Copy to clipboard.
F11 + V Paste from clipboard.

Emulator control keys
In PC-BASIC, F11 + F toggles fullscreen mode.

The working environment

User's guide 25

Compatibility
Some key combinations may have a different effect than described above, depending on the
operating system and the choice of interface to use with PC-BASIC.

• Certain key combinations will be interpreted by the operating system or window
manager and cause special actions. For example, on most systems, Alt + F4 will
terminate PC-BASIC unless the prevent-close option is set; F1 may open your
operating system's help system. It may be possible to avoid some of these effects
by using the graphical interface in full-screen mode.

• In the command-line interface on Windows, Ctrl + C terminates PC-BASIC.
• In the command-line interface on Linux and Mac, Ctrl + D terminates PC-BASIC.

26 PC-BASIC

3.2. Programs and files
PC-BASIC can hold one BASIC program at a time in memory. To enter a program line, start
with a line number and enter BASIC commands after that. The maximum length of a program
line is 255 characters, including the line number and any spaces. The program line will not
be immediately executed, but stored in the program. Program lines are sorted by line
number, so that line 10 is executed before line 20 . All program lines must have a line
number. Line numbers range from 0 to 65535 inclusive. It is not possible to enter a line
number higher than 65529 , but these can exist in loaded programs. Within one program
line, statements are separated by colons : .

To run the program, type the command RUN . PC-BASIC will now execute all program lines
in order inside the working environment. You cannot move the cursor around or enter
commands while the program is running. If and when the program finishes, it will return
control of the working environment to you. You can interrupt a program at any time by using
one of the key combinations Ctrl + Break or Ctrl + Scroll Lock . The program will stop
immediately, print a Break message and return control to you.

In GW-BASIC, you can not use Ctrl + C to interrupt a running program. However, many
modern keyboards do not have a Break or Scroll Lock key, which would make it impossible
to interrupt a program that does not exit. Therefore, by default, PC-BASIC treats Ctrl + C

as if it were Ctrl + Break . Set the option ctrl-c-break=False if you prefer the GW-BASIC
style behaviour. When using the text-based or command-line interface, this option is ignored.

A program can be stored on a drive by using the SAVE command, in one of three ways:

1. Plain text, readable by any text editor: SAVE "MYPROG",A
2. Tokenised, taking up less storage space: SAVE "MYPROG"
3. Protected, which is an encrypted format: SAVE "MYPROG",P

In all three cases, the program will be written to the current working directory with the name
MYPROG.BAS .

PC-BASIC can read and write Protected files created by GW-BASIC. Unlike GW-BASIC,
however, it does not disable accessing the unencrypted contents of the file. The encryption
used by GW-BASIC has been broken many decades ago, so Protected mode offered little
protection anyway; disallowing access is a small security hazard as it would allow someone
to send you a program that you cannot inspect before running it. However, it is possible to
disable access of protected files by enabling the option hide-protected .

Programs and files

User's guide 27

You can read a program file into memory with LOAD "MYPROG" . This will erase the program
currently in memory and replace it with the one read from the current working directory. To
access files in a different directory, specify a path from the current directory. The path
specification follows DOS conventions. The only valid path separator is the backslash \ .
For example, LOAD "PROGRAMS\MYPROG" .

You can load or run a program immediately on starting PC-BASIC by using the load or
run options. For example,

pcbasic --run=MYPROG.BAS

The arguments to these options can be provided as PC-BASIC paths or as paths in the
standard form for your operating system.

PC-BASIC can be used to convert between the three program formats: either by loading the
program and saving in your desired format, or from the command line using the convert
option. To convert a tokenised or protected file to plain text you could use, for example:

pcbasic --convert=A PROGRAMP.BAS PROGRAMA.BAS

28 PC-BASIC

Accessing your drives
PC-BASIC emulates DOS disk devices, which are referred to by drive letters such as Z: .
One of the drive letters is the current device.

On Windows:

• By default, PC-BASIC disk devices will agree with Windows drive letters at the
start of the PC-BASIC session.

• If PC-BASIC is started from the start menu shortcut, the current device will be your
Documents folder (or My Documents on some versions of Windows). You can
change this location by setting the shortcut's Start In folder.

• If PC-BASIC is started from the command prompt, the current device will be set to
the current working directory of the command prompt.

• If PC-BASIC's current device or Start In folder is changed to a system folder such
as C:\Program Files\PC-BASIC , Windows will move files written there to
%LocalAppData%\VirtualStore instead. This is best avoided.

• Note that PC-BASIC's DOS disk devices are not the same thing as Windows drive
letters. The device C: on PC-BASIC is not always your Windows C: drive. By
default, Windows drive letters are mapped to PC-BASIC devices at the start of the
PC-BASIC session. However, if you use the mount option; or if Windows drive
letters change while PC-BASIC is running (through e.g. net use or Map Network
Drive operations), they will no longer agree.

On other systems:

• By default, Z: will point to the current working directory from where PC-BASIC
was started. It will be the current device.

• If started from a menu or app package, this will usually be your home directory ˜ .

This current device is where files will be saved to and loaded from in BASIC if you do not
specify another device. You can change the current device using the current-device option
in the configuration file or on the command prompt.

Programs and files

User's guide 29

You can map drives and other file system locations as PC-BASIC devices by using the
mount option. For example, on Windows, the option

mount=A:C:\Users\Me\BasicFloppy
will make the folder C:\Users\Me\BasicFloppy available as PC-BASIC's A: device. On
other platforms, an example mount option could look like

mount=A:/home/me/BasicFloppy
which would make the directory /home/me/BasicFloppy available as PC-BASIC's A:
device.

PC-BASIC uses DOS conventions for filenames and paths. These are subtly different from
Windows short filename conventions and not-so-subtly different from Unix conventions. This
may lead to surprising effects in the presence of several files that match the same DOS
name. To avoid such surprises, it's best to run PC-BASIC in a working directory of its own
and use all-caps 8.3 format for all files.

Compatible BASIC files
Many BASIC dialects use the same extension .BAS , but their files are not compatible. PC-
BASIC runs GW-BASIC program files only. Some tips to recognise GW-BASIC programs:

• GW-BASIC files stored as text are plain text files with line numbers.
• Tokenised files are binary files that start with magic byte &hFF .
• Protected files are binary files that start with magic byte &hFE .

In particular, QBASIC files (which have no line numbers) and QuickBASIC files (magic byte
&hFC) will not run.

PC-BASIC will accept both DOS and Unix newline conventions for programs stored as plain
text. This behaviour is different from GW-BASIC, which only accepts text files with CR LF

line endings. As a consequence, in exceptional cases where a program line is continued
through LF correct GW-BASIC text files may not be loaded correctly. If you encounter such
a case, use the soft-linefeed option to enable GW-BASIC behaviour. If soft-linefeed is
enabled, text files in standard Unix format (LF line endings, no end-of-file character) will fail
to load, as they do in GW-BASIC. On Linux or Mac, use a utility such as unix2dos to convert
programs saved as text files before loading them. When saving as text, PC-BASIC always
uses CR LF line endings and &h1A at end-of-file.

30 PC-BASIC

http://waterlan.home.xs4all.nl/dos2unix.html
http://waterlan.home.xs4all.nl/dos2unix.html

Packages
PC-BASIC can run packaged programs. A package is simply a directory or zip archive. The
directory or zipfile contents will be loaded as the current working directory. If a configuration
file named PCBASIC.INI is present inside this directory, its settings are loaded; usually, one
of those settings will be a run argument linking to a BASIC program enclosed in the archive
or directory. PC-BASIC will recognise zipfiles regardless of their extension. A suggested
extension for PC-BASIC packages is .BAZ . Packages are a convenient choice if a program
needs to change many PC-BASIC options to function as desired, or if it needs a particular
working directory setup.

Zipfile packages are unpacked to a temporary directory each time they are loaded. The
temporary directory is removed when PC-BASIC closes. With zipfile packages, it is therefore
not possible to save files and re-open them on the next run of the package.

Cassette tapes
The CAS1 device interfaces with the cassette tape emulator. Tapes were never very popular
on the IBM PC, and indeed only available with the original PC and the PCjr. There are not
many IBM PC cassettes in the wild. However, should you come across one, all you have to
do to read it with PC-BASIC is record it into a .WAV (RIFF WAVE) file and attach it to the
CAS1: device with the cas1=WAV:filename option. You can also generate your own tape

images and store your programs on it. WAV files generated by PC-BASIC are large but very
easily compressed in a ZIP archive; this works better and leads to smaller files than
transcoding to a lossy audio format like MP3 .

As an alternative to .WAV , you can store tapes in CAS format. This is simply a bit-dump of
the tape and is interchangeable with tape images for the PCE IBM PC emulator.

Previous versions of PC-BASIC included support for BASICODE cassettes; this has been
discontinued in favour of a separate BASICODE decoder. Use this decoder to convert the
BASICODE program to PC-BASIC format before loading it into PC-BASIC.

Programs and files

User's guide 31

http://www.hampa.ch/pce/
https://github.com/robhagemans/basicode

Security
PC-BASIC makes some default choices with basic security in mind, but does not sandbox its
programs in any meaningful way. BASIC programs have more or less full access to your
computer. You should treat them with the same caution as you would shell scripts or
binaries. Therefore, do not run a program from the internet that you have not inspected first
using LIST or

pcbasic --convert=A filename

on the command line. You wouldn't just download an executable from the internet and run it
either, right?

32 PC-BASIC

3.3. Connecting to peripherals

Printing
You can print from PC-BASIC programs by accessing the LPT1: device. PC-BASIC will
send the output to your operating system's default printer, unless you change the lpt1=
option. To print through a printer named MyPrinter , set lpt1=PRINTER:MyPrinter . You can
also attach printers to the LPT2: and LPT3: devices.

The output will be sent to the printer when one of the following happens: a file open to
LPT1: is closed, a program terminates, or PC-BASIC is closed. If you prefer, you can

instead send every page separately to the printer by setting lpt1=PRINTER:MyPrinter:page .
You can even send every line separately, but this only makes sense on a tractor-fed printer
(as was common in GW-BASIC's heyday).

It's easy to print to a file instead of a printer: set lpt1=FILE:output.txt to send all LPT1:
printer output to the text file output.txt .

The printing statements LPRINT and LLIST always send their output to PC-BASIC's LPT1:
device.

The presentation of printed documents is left to your operating system: it will be the default
presentation of text files. If you wist to change the way documents are printed, please refer to
your OS's settings.

• On Windows, text files are printed the same way as would happen when you drag
a text file and drop it on the printer's icon. That means the formatting is handled by
the application associated to .txt files; usually this is notepad.exe . To change
the way PC-BASIC documents are printed, change the page setup in that
application. You will need to set a printer font that includes the characters you
need to print.

• On Unix systems, PC-BASIC will use the paps utility if it is available; this will
automatically select fonts that support the characters you need.

Connecting to peripherals

User's guide 33

Serial and parallel ports
PC-BASIC provides the serial devices COM1: and COM2: . To make use of these, you need
to attach them to a communications port on your computer with the com1= or com2= option.
To attach to the first physical serial port, set com1=PORT:0 (or, alternatively, com1=PORT:COM1
on Windows or com1=PORT:/dev/ttyS0 on Linux). If you do not have a serial port, you can
emulate one by sending the communications over a network socket: set
com1=SOCKET:localhost:7000 and all COM1: traffic will be sent through socket 7000 .

To access a parallel port, attach it to one of LPT1: , LPT2: or LPT3: . For example, set
lpt2=PARPORT:0 to attach your computer's first parallel port to LPT2: .

34 PC-BASIC

3.4. Changing the interface

Changing the interface

User's guide 35

Emulation targets
By default, PC-BASIC emulates GW-BASIC on a system with VGA video capabilities.
However, it can emulate several other setups, which differ from each other in terms of video
and audio capacity, fonts, memory size, as well as available BASIC syntax. The easiest way
to set the emulation target is by using a preset option. For example, run pcbasic --
preset=pcjr . Other available emulation target presets are:

Preset Emulation target
gwbasic Microsoft GW-BASIC 3.23
basica IBM BASICA.
pcjr IBM PCjr with Cartridge BASIC, including PCjr video and 3-voice sound

capabilities and extended BASIC syntax.
tandy Tandy 1000 with GW-BASIC, including Tandy video and 3-voice sound

capabilities and extended BASIC syntax.
olivetti Olivetti M24 or AT&T PC 6300.
cga IBM or compatible with Color/Graphics Adapter and a composite monitor. This

enables composite colorburst emulation.
ega IBM or compatible with Extended Graphics Adapter.
vga IBM or compatible with Video Graphics Array.
mda IBM or compatible with Monochrome Display Adapter and green-tinted

monochrome monitor.
hercules IBM compatible with Hercules Graphics Adapter and green-tinted monochrome

monitor.
strict Choose strict compatibility with GW-BASIC over convenience, security, rhyme

or reason.

Presets are groups of options that are defined in the default configuration file. You can create
your own presets by creating a header in your private configuration file with the name of the
new preset, followed by the options you want to apply. For example, if you define:

[my_preset]
video=vga
syntax=pcjr

you can now run pcbasic --preset=my_preset to start an emulation of a hypothetical
machine with a VGA video card running PCjr Cartridge BASIC.

36 PC-BASIC

GW-BASIC compatibility features
PC-BASIC aims for a very high level of compatibility with GW-BASIC. However, some
compatibility features are disabled by default for convenience or security reasons. These
features can be switched on using individual command-line options. The highest level of
compatibility with GW-BASIC can be attained by setting preset=strict , which switches off
all convenience and security features that cause differences with GW-BASIC.

Changing the interface

User's guide 37

Codepages
PC-BASIC supports a large number of legacy codepages that were common at the time GW-
BASIC was popular, including double-byte character set codepages used for Chinese,
Japanese and Korean. You can select your codepage by using the codepage= option. For
example, codepage=936 selects the GBK codepage commonly used on the Chinese
mainland. PC-BASIC will load and save all program files as if encoded in the codepage you
select.

It is also possible to load and save programs in a standard encoding by enabling the text-
encoding option. For example, if --text-encoding=utf-8 is set, plain-text program source
will be saved and loaded in standard UTF-8 encoding. Please note that you will still need to
select a codepage that provides all the Unicode characters that your program needs.

Note that PC-BASIC does not implement the following features relevant to some of these
codepages:

Bidirectional text
All text is printed left-to-right independent of the codepage selected. To write strings in
a language that is written right-to-left, the logical character sequence must be inverted
so that the order appears correct visually. While this is inconvenient, it is in line with
the behaviour of GW-BASIC. This affects code pages marked with B in the table.

Combining characters
PC-BASIC recognises single-byte code points (where each glyph shows on a single
cell on the screen) and double-byte code points (where a single glyph takes up two
cells on the screen). Combining characters (such as the combining diacritics of
codepages 874 and 1258) are therefore not shown correctly: instead of being
combined with their preceding base character as a single combined glyph, such
combinations will be shown as separate glyphs. Where available, alternative
codepages with precomposed characters will give better results. This affects code
pages marked with C in the table.

The following codepages are available. PC-BASIC uses the Microsoft OEM codepage
number where this is unambiguous. The code pages are expected to agree with Microsoft
sources for the ranges &h80 – &hFF . Ranges &h00 – &h1F and &h7F are implemented as
the IBM Special Graphic Characters where some code page sources will list these as the
corresponding control characters. For unofficial codepages and those with conflicting
numbering, codepage names are used instead of numbers.

38 PC-BASIC

codepage_id Codepage Languages Notes
437 DOS Latin USA English
720 Transparent ASMO Arabic B
737 DOS Greek Greek
775 DOS Baltic Rim Estonian, Latvian and

Lithuanian
850 DOS Latin 1 Western European

languages
851 DOS Greek 1 Greek
852 DOS Latin 2 Central European

languages
853 DOS Latin 3 Southern European

languages
855 DOS Cyrillic 1 Serbian, Macedonian

and Bulgarian
856 DOS Hebrew Hebrew B
857 DOS Latin 5 Turkish
858 DOS Latin 1 with Euro Western European

languages
860 DOS Portuguese Portuguese
861 DOS Icelandic Icelandic
862 DOS Hebrew Hebrew B
863 DOS Canadian French French
864 DOS Arabic Arabic B
865 DOS Nordic Danish and

Norwegian
866 DOS Cyrillic 2 Russian
868 DOS Urdu Urdu B
869 DOS Greek 2 Greek
874 TIS-620 Thai C
932 Shift-JIS (variant) Japanese
934 DOS/V Korea Korean
936 GBK; GB2312/EUC-CN superset Simplified Chinese
938 DOS/V Taiwan Traditional Chinese
949 IBM-PC Korea KS; EUC-KR superset Korean
950 Big-5 (variant) Traditional Chinese
1258 Vietnamese Vietnamese C

Changing the interface

User's guide 39

alternativnyj GOST Alternativnyj Variant Russian
armscii8a ArmSCII-8a; FreeDOS cp899 Armenian
big5-2003 Big-5 (Taiwan 2003) Traditional Chinese
big5-hkscs Big-5 (Hong Kong 2008) Traditional Chinese
georgian-
academy

Academy Standard Georgian

georgian-ps Parliament Standard Georgian
iransystem Iran System Persian B
kamenicky Kamenický; cp895 Czech
koi8-r KOI8-R Russian
koi8-ru KOI8-RU Ukrainian, Belarusian,

Russian
koi8-u KOI8-U Ukrainian, Russian
mazovia Mazovia; cp667, 991, 790 Polish
mik MIK, FreeDOS cp3021 Bulgarian
osnovnoj GOST Osnovnoj Variant Russian
ruscii RUSCII Ukrainian, Russian
russup3 Cornell Russian Support for DOS v3 Russian
russup4ac Exceller Software Russian Support for

DOS v4 Academic
Russian

russup4na Exceller Software Russian Support for
DOS v4 Non-Academic

Russian

viscii VISCII, FreeDOS cp30006 Vietnamese

You can add custom codepages to PC-BASIC, by adding a file with its mapping to Unicode
to the codepage/ directory.

40 PC-BASIC

Fonts
PC-BASIC emulates the distinctive raster fonts of IBM-compatible machines. The ROM fonts
of the original IBM and Tandy adapters (which are in the public domain in a number of
countries) have been included in PC-BASIC. These provide the most accurate emulation.
However, the font ROMs only included a single code page – DOS Latin USA 437.

PC-BASIC defaults to a font which is very similar in style to the IBM VGA font but has
support for many more code pages, in particular Western and Middle Eastern alphabets.
Chinese, Japanese and Korean are supported through "fullwidth" glyphs which take the
space of two regular characters.

It is possible to change the choice of font using the font= option. You can provide a list of
fonts, where the last font specified is the most preferred one.

PC-BASIC reads fonts in a variant of the .hex format introduced by UniFont. It's easy to
define custom fonts in this format: it can be edited in a regular text editor. See the UniFont
project for an authoring tool. You can add custom fonts to PC-BASIC by installing them into
the font/ subdirectory of PC-BASIC's installation directory.

By default, the following fonts are available:

font_name Name Sizes Codepages
default PC-BASIC default font 8, 14, 16 all bundled codepages
cga IBM Colour/Graphics Adapter font 8 437 only
mda IBM Monochrome Display Adapter font 14 437 only
vga IBM Video Graphics Array font 8, 14, 16 437 only
olivetti Olivetti/AT&T font 16 437 only
tandy1 Tandy-1000 font old version 8 437 only
tandy2 Tandy-1000 font new version 8 437 only

If not all glyphs are found in the specified font(s), the default font is used as a fallback.

The font names freedos , univga , and unifont are treated as synonyms of default
unless a font with one of these names is available. This behaviour is deprecated.

Changing the interface

User's guide 41

Redirecting I/O
PC-BASIC supports redirecting input and output the GW-BASIC way: output redirected with
the output= option will be sent to the screen as well as the specified file, while input
redirected with input= is taken only from the specified file. Note that screen output through
the SCRN: device and keyboard input through the KYBD: device are not redirected. Files
are read and written in the codepage set with PC-BASIC.

Note that it is also possible to use your operating system's facility to redirect console output
using the < and > operators. It's best to set interface=none so that I/O is redirected
through the console. This will produce files in your console's standard encoding, which is
often UTF-8 on Unix and Windows-1252 on Windows.

Command-line interface
You can run PC-BASIC as a command-line interface by setting the interface=cli (or -b)
option. No window will be opened: you can type BASIC commands straight into your
Command Prompt/Terminal. Use the horizontal arrow keys to move on the current line you're
editing; use the vertical arrow keys to show screen rows above and below. Copy and paste
are available only if the calling shell provides them. On Windows, Ctrl + Break will terminate
PC-BASIC immediately. You can use Ctrl + C to interrupt the program. The end-of-file key
combination (Ctrl + D on Unix, Ctrl + Z on Windows) will exit PC-BASIC.

You can use the command-line interface to run one or a few BASIC commands directly, like
so:

me@mybox$ pcbasic -c '?1+1'
2

me@mybox$

For scripting purposes, it is also possible to run PC-BASIC without any interface by setting
interface=none or -n . If this is set, PC-BASIC will take input from and send output to the

console as UTF-8 without further modification. This is useful in combination with redirection
and pipes.

42 PC-BASIC

Text-based interface
There is also a full-screen text interface available: enable it by setting interface=text (or
-t). The text-based interface is very similar to the default graphical interface, but runs in

your Command Prompt or Terminal window.

Graphical screen modes can be used in text and command-line interface, but only the text on
the screen will be visible. pre, many Ctrl and Alt key combinations are not available.

The text and command-line interfaces will attempt to use the PC speaker for sound. Only
single-voice sound can be produced this way. On Linux systems under X11, you may need
to install the beep utility and enable the PC-speaker driver or emulation; direct speaker
access is often limited to root or tty logins, and on Ubuntu systems it is disabled by default.

Changing the interface

User's guide 43

4. Configuration guide
This documentation discusses how to change settings and options for PC-BASIC.

44 PC-BASIC

4.1. Changing settings
PC-BASIC has a number of settings that change the way it operates. Settings can be
changed by setting options on the command line or through editing the configuration file. In
either method, the options have the same name and syntax. In what follows, we will often
refer to a particular option setting; remember that you can set this from the command line as
well as from the configuration file.

Command-line options
You can enter command-line options if you start PC-BASIC from your operating system's
command prompt, console or terminal (the C:\> prompt on Windows), by supplying the
option with two dashes in front, like so:

pcbasic --preset=tandy --ctrl-c-break=True

On the command line, you can leave out the expression =True that is common in switching
options. Some options have an alternative, short name consisting of a single letter preceded
by a single dash, which you can use on the command line. You can combine multiple short
options with a single dash.

Configuration files
You can change options by adding or removing lines in your local configuration file, which
can be found in the following location:

Windows
%AppData%\pcbasic-2.0\PCBASIC.INI

OS X
~/Library/Application Support/pcbasic-2.0/PCBASIC.INI

Linux
~/.config/pcbasic-2.0/PCBASIC.INI

Change an option in the configuration file by adding a line in the section named [pcbasic] ,
like so:

[pcbasic]
preset=tandy
ctrl-c-break=True

Changing settings

Configuration guide 45

You cannot use positional arguments or the short name of options in the configuration file.
You also cannot leave out the expression =True .

The configuration file should be a text file encoded in ASCII or UTF-8.

46 PC-BASIC

4.2. Synopsis
pcbasic [program|package [output]] [--allow-code-poke[=True|=False]] [--aspect=x,y] [-b]

[--border=width] [-c=statement[:statement ...]] [--caption=title] [--cas1=type:value]
[--codepage=codepage_id[:nobox]] [--config=config_file] [--com1=type:value]
[--com2=type:value] [--convert={A|B|P}] [--mouse-clipboard[=True|=False]]
[--ctrl-c-break[=True|=False]] [--current-device={CAS1|@|A|B ... |Z}]
[--debug[=True|=False]] [--dimensions=x,y] [-d] [--double[=True|=False]]
[-e=statement[:statement ...]] [--exec=statement[:statement ...]]
[--extension=module_name[,module_name ...]] [--font=font_name[,font_name ...]]
[--fullscreen[=True|=False]] [-h] [--help] [--hide-listing=line_number]
[--hide-protected[=True|=False]] [-i={input_file|{STDIO|STDIN}[:RAW]}]
[--input={input_file|{STDIO|STDIN}[:RAW]}] [--interface=[none|cli|text|graphical]]
[-k=keystring] [--keys=keystring] [-l=program] [--load=program] [--logfile=log_file]
[--lpt1=type:value] [--lpt2=type:value] [--lpt3=type:value] [-f=number_of_files]
[--max-files=number_of_files] [--max-memory=max_memory[,basic_memory_blocks]]
[-s=record_length] [--max-reclen=record_length]
[--monitor={rgb|composite|green|amber|grey|mono}]
[--mount=[drive:path[,drive:path ...]]] [-n] [-o=output_file[:append]]
[--output=output_file[:append]] [--peek=[seg:addr:val[,seg:addr:val ...]]]
[--preset=option_block] [--prevent-close[=True|=False]] [-q] [--quit[=True|=False]]
[--reserved-memory=number_of_bytes] [--resume[=True|=False]] [-r=program]
[--run=program] [--scaling={smooth|crisp|native}] [--serial-buffer-size=size]
[--shell=[shell-executable]] [--soft-linefeed[=True|=False]] [--sound[=True|=False]]
[--state=state_file] [--syntax={advanced|pcjr|tandy}] [-t] [--term=terminal_program]
[--text-width={40|80}] [--text-encoding=[encoding]] [--utf8[=True|=False]] [-v]
[--version] [--video=adapter] [--video-memory=size] [-w] [--wait[=True|=False]]
[--options=gwbasic_options]

Synopsis

Configuration guide 47

4.3. Positional arguments
Positional arguments must come before any options, must not start with a dash - . Any
positional arguments that follow options will be ignored.

program

If a .BAS program is specified as the first positional argument, it will be run. The --
run , --load and --convert options override this behaviour.

package

If a zipfile package or directory is specified as the first positional argument, any
contained configuration file PCBASIC.INI will be loaded; usually, it will run a program
file in the package. All other command-line options will override the package
configuration file, note in particular the potential of the --run , --load and --
convert options to alter the behaviour of the package.

output

If a second positional argument is specified, it sets the output file for file format
conversion. This argument is ignored unless the --convert option is given.

48 PC-BASIC

4.4. Options
--allow-code-poke[=True|=False]

Allow programs to POKE into code memory.

--aspect=x,y
Set the display aspect ratio to x : y . Only has an effect if combined with --
interface=graphical .

-b
Use the command-line interface. This is identical to --interface=cli .

--border=width
Set the width of the screen border as a percentage from 0—100. The percentage
refers to the total width of the borders on both sides as a fraction of the usable screen
width. Only has an effect if combined with --interface=graphical .

-c=statement[:statement ...]
Execute commands as a shell. This is a convenience shorthand and identical to --
interface=none --quit=True --exec=statement[:statement ...] .

--caption=title
Set the title bar caption of the PC-BASIC window. Default title is PC-BASIC.

--cas1=type:value
Attach a resource to the CAS1: cassette device. type:value can be

WAV:wav_file
Connect to the RIFF Wave file wav_file with data modulated in IBM PC
cassette format.

CAS:cas_file
Connect to the PCE/PC-BASIC CAS tape image cas_file .

--codepage=codepage_id[:nobox]
Load the specified codepage. The codepage determines which characters are
associated to a given character byte or, in the case of double-byte codepages, two
character bytes. The available codepages are stored in the codepage/ directory; by
default, these are:

437 720 737 775 806 850
851 852 853 855 856 857

Options

Configuration guide 49

858 860 861 862 863 864
865 866 868 869 874 932
934 936 938 949 950 1258

alternativnyjarmscii8a big5-2003 big5-hkscs
georgian-
academy

georgian-
ps

iransystem iscii-as iscii-be iscii-de iscii-gu iscii-ka
iscii-ma iscii-or iscii-pa iscii-ta iscii-te kamenicky
koi8-r koi8-ru koi8-u mazovia mik osnovnoj
pascii ruscii russup3 russup4ac russup4na viscii

. See the list of codepages in the User's Guide for details.
The specifier nobox disables box-drawing recognition for double-byte character set
code pages. By default, sequences of box-drawing characters are recognised by an
algorithm that isn't as smart as it thinks it is, and displayed as box drawing rather than
as DBCS characters. If nobox is set, they will be displayed as DBCS.

--config=config_file
Read a configuration file. The system default configuration is always read first, but any
preset group of options in a configuration file replaces the whole equivalent default
preset group.

--com1=type:value
Attach a resource to the COM1: serial device. type:value can be one of the
following.

PORT:device_name
Connect to a serial device. device_name can be a device name such as COM1
or /dev/ttyS0 or a number, where the first serial port is number 0.

SOCKET:host:socket
Connect to a TCP socket on a remote or local host.

RFC2217:host:socket
Connect using the RFC2217 protocol to a TCP socket on a remote or local
host.

STDIO:[CRLF]
Connect to standard I/O of the calling shell. If CRLF is specified, PC-BASIC
replaces CR characters with LF on its output and LF with CR on its input.
This is more intuitive on Unix shells. When using a Unix console, you should
use stty -icanon to enable PC-BASIC to read input correctly.

If this option is not specified, the COM1: device is unavailable.

50 PC-BASIC

--com2=type:value
Attach a resource to the COM2: serial device. See --com1 .

--convert={A|B|P}
Convert program to one of the following formats:

A Plain text
B Tokenised
P Protected

If output is not specified, write to standard output. If program is not specified, use
the argument of --run or --load . If none of those are given, read from standard
input. Overrides --resume , --run and --load .

--mouse-clipboard[=True|=False]
Enable clipboard operations with the mouse. If True (default), select text with the left
mouse button to copy and paste with the middle mouse button.

--ctrl-c-break[=True|=False]
If False , follow GW-BASIC behaviour where Ctrl + C breaks AUTO and INPUT but
not program execution or LIST .
If True , treat Ctrl + C exactly like Ctrl + Break and Ctrl + Scroll Lock when --
interface=graphical .
With --interface={text|cli} , Ctrl + C is always treated like Ctrl + Break .
Default is True .

--current-device={CAS1|@|A|B ... |Z}
Set the current device to the indicated PC-BASIC drive letter or CAS1 for the cassette
device. The device chosen should be mounted to an actual location using --mount
(or --cas1 if the cassette device is chosen).

--debug[=True|=False]
Developer option - use only if you know what you're doing.
Enable debugging extension.

--dimensions=x,y
Set window dimensions to x by y pixels. This overrides --scaling=native and --
aspect . Only has an effect if combined with --interface=graphical .

-d --double[=True|=False]
Enable double-precision transcendental math functions. This is equivalent to the /d
option in GW-BASIC.

Options

Configuration guide 51

-e=statement[:statement ...] --exec=statement[:statement ...]
Execute BASIC statements. The statement s are executed after loading any program
but before entering into direct mode or running it. Multiple statements can be entered
by separating them with colons : . These will be executed as if they were entered as
separate statements, not as a single compound statement: even if statements such as
GOTO or LIST are included, the following statements will still be executed. The

character : will be interpreted as part of a string if quoted with single quotes " . If
your calling shell interprets such quotes, you should properly escape them.

--extension=module_name[,module_name ...]
Developer option - use only if you know what you're doing.
Load extension module(s).

--font=font_name[,font_name ...]
Use the specified fonts for the interface. The last fonts specified take precedence,
previous ones are fallback. The available fonts are stored in font/ . By default, the
following fonts are available:

default cga mda vga olivetti tandy1
tandy2

. The font names freedos , univga , and unifont are treated as synonyms of
default unless a font with one of these names is available. This behaviour is

deprecated and these synonyms will be removed in a future version. See the list of
fonts in the User's Guide for details.

--fullscreen[=True|=False]
Fullscreen mode. Only has an effect if combined with --interface=graphical .

-h --help
Show a usage message and exit.

--hide-listing=line_number
Disable listing and saving to plain text of lines beyond line_number , as in GW-BASIC
beyond 65530 . Use with care as this allows execution of hidden lines of code.
Default is to list all lines.

--hide-protected[=True|=False]
Disable listing and saving to plain text of protected files, as in GW-BASIC. Use with
care as this allows execution of hidden lines of code.

-i={input_file|{STDIO|STDIN}[:RAW]} --input={input_file|{STDIO|STDIN}[:RAW]}
Retrieve keyboard input from input_file , except if KYBD: is read explicitly. Input
from KYBD: files is always read from the keyboard, following GW-BASIC behaviour.

52 PC-BASIC

If input_file is STDIO: or STDIN: , keyboard input will be read from standard input.
If RAW is specified, input will be treated as codepage bytes. If not, it will be treated as
the locale's encoding (probably UTF-8).

--interface=[none|cli|text|graphical]
Choose the type of interface. Not all interfaces will be available on all systems. The
following interface types may be available:

none Filter for use with pipes. Also -n .
cli Command-line interface. Also -b .
text ANSI text interface. Also -t .
graphical SDL2 graphical interface.

The following values for this option are deprecated:

ansi ANSI text interface. Synonym for text .
sdl2 SDL2 graphical interface. Synonym for graphical .
pygame PyGame graphical interface. Please use graphical instead.
curses NCurses text interface. Please use text instead.

The default is graphical .

-k=keystring --keys=keystring
Insert the keystring into the keyboard buffer. keystring may contain escape codes
such as \r for return, \n for line feed and \xXX to enter CHR$(&HXX) . keystring

may contain e-ASCII codes to indicate keypresses that do not have a regular
character encoding. For example, \0\x0F indicates Shift+Tab.

-l=program --load=program
Start in direct mode with the BASIC program loaded.

--logfile=log_file
Write error and warning messages to log_file instead of stderr .

--lpt1=type:value
Determine where the output goes when writing to the LPT1: parallel device.
type:value can be

PRINTER:[printer_name][:trigger]
Output is written to a printer. If printer_name is not specified, the default
printer is used. Windows and CUPS printers are supported.
The printer will be activated when a file on LPT1: trigger sets an additional
trigger to activate the printer:

Options

Configuration guide 53

line After every line break.
page After every page break.
close No additional trigger

The default is close .

FILE:file_name
Output is written to a file or character device such as /dev/stdout on Unix or
LPT1 on Windows.

STDIO:
Output is written to the standard output of the calling shell.

PARPORT:port_number
Output is written to a Centronics parallel port, where port_number is 0 for the
first parallel port, etc. This option only works with physical parallel ports. To
write to a Windows printer or other device mapped with NET USE LPT1: , use
FILE:LPT1 instead.

The default is PRINTER: , so that output goes to the default printer specified by the
operating system.

--lpt2=type:value
Attach a resource to the LPT2: parallel device. See --lpt1 . Note that, unlike
LPT1: , printers connected to LPT2: do not get activated when a program

terminates. If this option is not specified, LPT2: is unavailable.

--lpt3=type:value
Attach a resource to the LPT3: parallel device. See --lpt1 . Note that, unlike
LPT1: , printers connected to LPT3: do not get activated when a program

terminates. If this option is not specified, LPT3: is unavailable.

-f=number_of_files --max-files=number_of_files
Set maximum number of open files to number_of_files . This is equivalent to the /f
option in GW-BASIC. Default is 3 .

--max-memory=max_memory[,basic_memory_blocks]
Set the maximum size of the data memory segment to max_memory and the maximum
size of the data memory available to BASIC to basic_memory_blocks*16 . In PC-
BASIC, the minimum of these values is simply the data memory size; the two values
are allowed for compatibility with the /m option in GW-BASIC.

54 PC-BASIC

-s=record_length --max-reclen=record_length
Set maximum record length for RANDOM files to record_length . Default is 128 ,
maximum is 32767 . This is equivalent to the /s option in GW-BASIC.

--monitor={rgb|composite|green|amber|grey|mono}
Sets the monitor type to emulate. Available types are:

rgb RGB colour monitor (default).
composite Composite colour monitor.
green Green-tinted monochrome monitor.
amber Amber-tinted monochrome monitor.
grey Greyscale monochrome monitor.
mono Green-tinted monochrome monitor (same as green).

On SCREEN 2 with --video={pcjr|tandy|cga} , --monitor=composite enables
(crude) colour artifacts.

--mount=[drive:path[,drive:path ...]]
Assign the path path to drive letter drive: . The path can be absolute or relative.
If this option is not specified: on Windows, all Windows drive letters will be assigned to
PC-BASIC drive letters; on other systems, the current working directory is assigned to
Z: . If this option is specified but empty, do not mount any drives (except the internal

device @:).

-n
Run PC-BASIC as a command-line filter. Same as --interface=none .

-o=output_file[:append] --output=output_file[:append]
Send screen output to output_file , except if SCRN: is written to explicitly. Output to
SCRN: files will always be shown on the screen, as in GW-BASIC.

If the specifier append is given, the output file is appended to rather than overwritten.
If output_file is STDIO: or STDOUT: , screen output will be sent to standard output.

--peek=[seg:addr:val[,seg:addr:val ...]]
Define PEEK preset values. If defined, DEF SEG seg:? PEEK(addr) will return val .

--preset=option_block
Load machine preset options. A preset option corresponds to a section defined in a
config file by a name between square brackets, like

[this]
--preset=this will load all settings defined in that section. Available presets depend

on your configuration file. See the list of default presets in the User's Guide.

Options

Configuration guide 55

--prevent-close[=True|=False]
Suppress window close event. This allows BASIC to capture key combinations that
normally close the window. Graphical interface only. By default, the operating
system's key combination to close a window (usually Alt + F4) terminates PC-
BASIC. Set --prevent-close to allow BASIC to capture this key combination instead.
This is useful if your program uses this key combination.

-q --quit[=True|=False]
Quit interpreter when execution stops. If combined with --run , PC-BASIC quits when
the program ends. If set in direct mode, PC-BASIC quits after the first command is
executed.

--reserved-memory=number_of_bytes
Reserve number_of_bytes of memory at the bottom of the data segment. For
compatibility with GW-BASIC. Default is 3429 bytes. Lowering this value makes
more string and variable space available for use by programs.

--resume[=True|=False]
Resume from saved state. Overrides --run and --load .

-r=program --run=program
Run the specified program . Overrides --load .

--scaling={smooth|crisp|native}
Choose scaling method.

smooth
The display is smoothly scaled to the largest size that allows for the correct
aspect ratio.

crisp
The display is scaled to the same size as with smooth , but without smoothing.

native
Scaling and aspect ratio are optimised for the display's native pixel size,
without smoothing. --scaling=native overrides --aspect.

Default is smooth . Only has an effect if combined with --interface=graphical .

--serial-buffer-size=size
Set serial input buffer size . Default is 256 . If set to 0 , serial communications are
disabled.

56 PC-BASIC

--shell=[shell-executable]
Enable the SHELL statement to run the operating system command interpreter
shell-executable . The executable shell-executable should support MS-DOS's
COMMAND.COM calling conventions, in particular its /C switch. Example command

interpreters are CMD.EXE on Windows and "wine cmd.exe" on Unix. If shell-

executable is empty (as it is by default), the SHELL statement is disabled.

--soft-linefeed[=True|=False]
Do not treat LF in text and program files as a line break. This enables the highest
level of compatibility with GW-BASIC files. If this option is set, any Linux or Mac text
files need to be converted to DOS text before using them with PC-BASIC.

--sound[=True|=False]

False Suppress sound output.
True Output sound, if a sound driver is available (default).

If sound is on, PC-BASIC will try to use the SDL2 library first; if it is not available, it will
try PortAudio. If neither is available, sound will be disabled. The following values for
this option are deprecated:

none Suppress sound output. Use False instead.
interface Use the native sound engine of the interface. Use True instead.
sdl2 Use the SDL2 sound generator.
portaudio Use the PortAudio sound generator.
beep Use the built-in speaker.

--state=state_file
Set the save-state file to state_file . Default is pcbasic.session in the Application
Data directory.

--syntax={advanced|pcjr|tandy}
Choose BASIC dialect. Available dialects are:

advanced IBM BASICA
gwbasic Microsoft GW-BASIC
pcjr IBM PCjr Cartridge BASIC
tandy Tandy 1000 GW-BASIC.

Default is advanced .

-t
Use text-based interface. Same as --interface=text .

Options

Configuration guide 57

--term=terminal_program
Set the terminal program run by the PCjr TERM command to terminal_program . This
only has an effect with --syntax={pcjr|tandy} .

--text-width={40|80}
Set the number of columns in text mode at startup. Default is 80 .

--text-encoding=[encoding]
Set the text encoding.
Text files (i.e. plain-text programs and files opened for INPUT and OUTPUT) stored on
a disk device will be assumed to be encoded in encoding . Examples of valid
encodings are utf-8 , utf-16 , latin-1 .
Please ensure that all characters in the current codepage are included in the encoding
you choose; if this is not the case then such characters will be replaced by � or ? .
If encoding is not set, text files will be treated as raw bytes in the current PC-BASIC
codepage.

--utf8[=True|=False]
Set the text encoding to UTF-8.
This option is deprecated and ignored if --text-encoding is set. Use --text-
encoding=utf-8 instead.

-v --version
Print PC-BASIC version string and exit.

--video=adapter
Set the video adapter to emulate. Available adapters:

vga Video Graphics Array
ega Enhanced Graphics Adapter
cga Color/Graphics Adapter
mda Monochrome Display Adapter
hercules Hercules Graphics Adapter
pcjr IBM PCjr graphics
tandy Tandy 1000 graphics
olivetti Olivetti M24 graphics

Default is vga .

--video-memory=size
Set the amount of emulated video memory available. This affects the number of video
pages that can be used. On PCjr and Tandy, this can be changed at runtime through

58 PC-BASIC

the CLEAR statement; at least 32768 needs to be available to enter SCREEN 5 and
SCREEN 6 . Default is 16384 or PCjr and Tandy and 262144 on other machine

presets.

-w --wait[=True|=False]
If True , PC-BASIC waits for a keystroke before closing the window on exit. Only
works for --interface=graphical or --interface=text . Default is False .

--options=gwbasic_options
Set GW-BASIC-style command-line switches. This is a convenience option to facilitate
migration from GW-BASIC. gwbasic_options is a string that may contain the
following options:

/d
Enable double-precision floating-point math functions. See also --double .

/f:n
Set the maximum number of open files. See also --max-files .

/s:n
Set the maximum record length for RANDOM files. See also --max-reclen .

/c:n
Set the size of the receive buffer for COM devices. See also --serial-buffer-
size .

/i
Statically allocate file control blocks and data buffer. Note that this is already
the default approach in GW-BASIC and PC-BASIC so that this option has no
effect.

/m:n,m
Set the highest memory location to n and maximum BASIC memory size to
m*16 bytes. See also --max-memory .

>filename
Write screen output to filename . See also --output .

>>filename
Append screen output to filename . See also --output .

<filename
Read keyboard input from filename . See also --input .

Options

Configuration guide 59

GW-BASIC-style switches are not case sensitive. Note that the symbols used in these
switches may have different meaning in the shell from which PC-BASIC is called; you
should quote and escape the options as necessary.

60 PC-BASIC

4.5. Examples
pcbasic

Start PC-BASIC in direct mode, emulating GW-BASIC/BASICA with VGA graphics.

pcbasic --codepage=950
Start PC-BASIC using the Big-5 codepage.

pcbasic Foobar.baz
Start PC-BASIC with package Foobar. Load the settings from the package; usually
this will run a main program contained in the package.

pcbasic Foobar.baz --convert=A --text-encoding=utf-8
List the main program of package Foobar to standard output as UTF-8.

pcbasic MYPROG.BAS --mount=A:./files,B:./morefiles
Mount the current directory's subdirectory files as drive A: and subdirectory
morefiles as drive B: , then run MYPROG.BAS .

pcbasic --mount=A:C:\fakeflop
Run PC-BASIC with Windows directory C:\fakeflop mounted as A: drive.

pcbasic Z:\INFO.BAS --preset=mda --monitor=amber
Run INFO.BAS in the current directory on an emulated MDA with amber tinted
monitor.

pcbasic /home/me/retro/COMP.BAS --preset=cga --monitor=composite
Run COMP.BAS stored at /home/me/retro on an emulated CGA machine with a
composite monitor.

pcbasic PCJRGAME.BAS --preset=pcjr -k='start\r'
Run PCJRGAME.BAS on an emulated PCjr and feed in the keystrokes
s t a r t Enter .

pcbasic BANNER.BAS --lpt2=PRINTER:
Run BANNER.BAS in default mode with the default printer attached to LPT2: .

pcbasic --resume
Resume the most recently closed PC-BASIC session.

Examples

Configuration guide 61

pcbasic -c ?1+1
Execute the BASIC command PRINT 1+1 in the command-line interface and return to
the calling shell.

62 PC-BASIC

5. Language guide
This documentation describes the PC-BASIC language, which aims to faithfully emulate GW-
BASIC 3.23, IBM Advanced BASIC, IBM Cartridge BASIC and Tandy 1000 GW-BASIC.

The BASIC Language Guide covers the language topic by topic, thematically grouping
language elements used for a related purpose. Please refer to the BASIC Language
Reference for a formal description of the langage elements and their syntax.

Examples

Language guide 63

5.1. Working with programs
Statement Description
AUTO Enter automatic line numbering mode
CHAIN Load a new program and run it, preserving common variables
COMMON Set common variables
DELETE Delete lines from the program
EDIT Print a program line to the screen for editing
LIST Print program lines to the screen
LLIST Print program lines to the printer
LOAD Read a new program from file
MERGE Overlay a program file onto the current program
NEW Clear the current program from memory
RENUM Replace the program's line numbers
RUN Start the current program
SAVE Store the current program to file
TRON Enable line number tracing
TROFF Disable line number tracing
SYSTEM Exit the BASIC interpreter

64 PC-BASIC

5.2. Control flow
A program is normally executed starting with its lowest line number (or the line number called
by RUN). Statements on a line are executed from left to right. When all statements on a line
are finished, execution moves to the next lowest line number, and so on until no line
numbers are left. Control flow statements can be used to modify this normal flow of
executon.

The END and STOP statements serve in a program to stop its execution and return to direct
mode. When STOP is used, a Break message is printed. From direct mode, CONT can be
executed to resume the program where it was stopped. While END seems intended to
terminate the program, it does not preclude the user from resuming it with CONT .

Unconditional jumps can be made with GOTO . The program flow will continue at the line
number indicated in the GOTO statement. Due to the PC-BASIC language's lack of
sophisticated looping, branching and breaking constructs, unconditional jumps are essential
and used frequently.

The GOSUB statement jumps to a subroutine. Similar to GOTO , this is an unconditional jump;
however, the location of the call is stored and the program will continue its flow there after
the subroutine terminates with a RETURN statement. Subroutines are somewhat like
procedures in that they allow chunks of code that perform a given task to be separated from
the main body of the program, but they do not have separate scope since all variables in PC-
BASIC are global. They do not have return values. It is even possible to jump out of a
subroutine to anywhere in the program by supplying the RETURN statement with a line
number.

The ON statement provides an alternative branching construct. An integer value is used to
selects one of a list of line numbers, and execution is continued from there. It can be used
with a GOTO jump as wellas with a GOSUB subroutine call.

ON , GOTO and GOSUB can also be used from direct mode to start a program or subroutine
without resetting variables.

Control flow

Language guide 65

The IF–THEN–ELSE construct tests for a condition and execute different code branches
based on its truth value. This is not a block construct; all code in the THEN and ELSE
branches must fit on one line. For this reason, branching is often used in combination with
GOTO jumps. For example:

10 INPUT "How old are you"; AGE%
20 IF AGE%>30 THEN 100
30 IF AGE%<30 THEN 200 ELSE PRINT "You are 30 years old."
40 END
100 PRINT "You are over 30."
110 END
200 PRINT "You are not yet 30."
210 END

The WHILE–WEND looping construct repeats the block of code between WHILE and WEND as
long as a given condition remains true.

The FOR–NEXT construct repeats a block of code while a counter remains in a given range.
The counter is set to a starting value at the first pass of the FOR statement and incremented
by the STEP value at each pass of NEXT . For example:

10 FOR I=1 TO 10
20 PRINT STRING$(I, "*"); USING " [##]"; I
30 NEXT I

Looping constructs may be nested.

Control flow is also affected by event and error trapping.

66 PC-BASIC

Statement Description
CONT Continue interrupted program
ELSE Ignore the remainder of the line (standalone ELSE)
END Stop execution of the program
FOR Start a for-loop
GOSUB Call a subroutine
GOTO Jump to another location in the program
IF Branch on a condition
NEXT Iterate a for-loop
ON Calculated jump or subroutine call
RETURN Return from subroutine
STOP Interrupt program execution
WEND Iterate a while-loop
WHILE Enter a while-loop

Control flow

Language guide 67

5.3. Arrays and variables
Statement Description
DEFDBL Specify variable name range for double-precision floats
DEFINT Specify variable name range for integers
DEFSNG Specify variable name range for single-precision floats
DEFSTR Specify variable name range for strings
DIM Allocate an array
ERASE Deallocate an array
LET Assign a value to a variable
OPTION BASE Set the starting index of arrays
SWAP Swap two variables

68 PC-BASIC

5.4. Type conversion
Function Description
ASC Character to ordinal value
CHR$ Ordinal value to character
HEX$ Integer to hexadecimal string representation
OCT$ Integer to octal string representation
STR$ Numeric value to decimal string representation
VAL String representation to numeric value
CDBL Numeric value to double-precision float
CINT Numeric value to integer
CSNG Numeric value to single-precision float
CVD Byte representation to double-precision float
CVI Byte representation to integer
CVS Byte representation to single-precision float
MKD$ Double-precision float to byte representation
MKI$ Integer to byte representation
MKS$ Single-precision float to byte representation

Type conversion

Language guide 69

5.5. String operations
Statement Description
LSET Copy a left-justified value into a string buffer
MID$ Copy a value into part of a string buffer
RSET Copy a right-justified value into a string buffer
Function Description
INSTR Find
LEFT$ Left substring
LEN String length
MID$ Substring
RIGHT$ Right substring
SPACE$ Repeat spaces
STRING$ Repeat characters

70 PC-BASIC

5.6. Text and the screen
Statement Description
CLS Clear the screen
COLOR Set colour and palette values
LOCATE Set the position and shape of the text screen cursor
PALETTE Assign a colour to an attribute
PALETTE USING Assign an array of colours to attributes
PCOPY Copy a screen page
PRINT Print expressions to the screen
VIEW PRINT Set the text scrolling region
WIDTH Set the number of text columns on the screen
Function Description
CSRLIN Current row of cursor
POS Current column of cursor
SCREEN Character or attribute at given location

Text and the screen

Language guide 71

5.7. The printer
Statement Description
LCOPY Do nothing
LPRINT Print expressions to the printer
Function Description
LPOS Column position of printer head

72 PC-BASIC

5.8. Keyboard input
Statement Description
INPUT Retrieve user input on the console
LINE INPUT Retrieve a line of user input on the console
Function Description
INKEY$ Nonblocking read from keyboard
INPUT$ Blocking read from keyboard

Keyboard input

Language guide 73

/home/rob/Projects/basic-project/www/pcbasic/doc/2.0/LINE-INPUT
/home/rob/Projects/basic-project/www/pcbasic/doc/2.0/LINE-INPUT

5.9. Function-key macros
Statement Description
KEY Manage the visibility of the function-key macro list
KEY Define a function-key macro

74 PC-BASIC

5.10. Calculations and maths

Mathematical functions

Function Description
ABS Absolute value
ATN Arctangent
COS Cosine
EXP Exponential
FIX Truncation
INT Floor
LOG Natural logarithm
SIN Sine
SGN Sign
SQR Square root
TAN Tangent

Random numbers

Statement Description
RANDOMIZE Seed the random number generator
Function Description
RND Pseudorandom number

Calculations and maths

Language guide 75

5.11. Devices and files

File operations

Statement Description
CLOSE Close a file
FIELD Assign a string to a random-access record buffer
GET Read a record from a random-access file
INPUT Read a variable from a file
LINE INPUT Read a line from a file
LOCK Locks a file or a range of records against other use
OPEN Open a data file
PUT Write the random-access record buffer to disk
RESET Close all files
UNLOCK Unlocks a file or a range of records against other use
WIDTH Set the number of text columns in a file
WRITE Write expressions to a file
Function Description
EOF End of file
LOC Location in file
LOF Length of file
INPUT$ Read a string from a file

Devices
PC-BASIC recognises the following DOS-style devices, which can be used by opening a file
on them. Some devices allow specification of further file parameters, such as handshake
specifications for serial devices, a filename for cassette devices and a path for disk devices.
When operating on disk devices, specifying a path is mandatory.

The filename aliases listed here are only available if the current device is a disk device.

76 PC-BASIC

Device Filename
alias

Allowed
modes

Description

SCRN: CON OUTPUT The screen. Output to SCRN: has largely the same effect
as straight output using PRINT. A difference is the WIDTH
setting which is independent of the real screen width.

KYBD: CON INPUT The keyboard. Input read from KYBD: is not echoed to
the screen. Special keys like arrow keys are registered
differently than when using INPUT or INPUT$ straight.

LPT1:
LPT2:
LPT3:

PRN for
LPT1:

OUTPUT
RANDOM

Parallel ports 1—3. LPT devices can be attached to the
physical parallel port, to a printer or to a text file with the
--lptn options. Opening a printer for RANDOM has the
same effect as opening it for OUTPUT; attempting random-
file operations will raise Bad file mode.

COM1:
COM2:

AUX for
COM1:

INPUT
OUTPUT
APPEND
RANDOM

Serial ports 1—2. COM devices can be attached to a
physical serial port or to a network socket with the --
comn options.

CAS1: INPUT
OUTPUT

Cassette tape driver. CAS devices can be attached to a
WAV (RIFF Wave) or a CAS (bitmap tape image) file
with the --cas1 option.

A: —
Z: and
@:

INPUT
OUTPUT
APPEND
RANDOM

Disk devices. These devices can be mounted to a
directory on the host file system with the --mount option.

NUL INPUT
OUTPUT
APPEND
RANDOM

Null device. This device produces no bytes when
opened for INPUT and absorbs all bytes when opened for
OUTPUT.

GW-BASIC additionally recognises the following little-used device, which is not implemented
in PC-BASIC.

Devices and files

Language guide 77

Device Allowed
modes

Description

CONS: OUTPUT The screen (console). Output to CONS: is displayed directly at the
cursor position when Enter is pressed. It does not update the end-
of-line value for the interpreter, which means that it does not move
with Backspace or Del and is not stored in program lines if it
appears beyond the end of the existing line. CONS: can be opened
with any access mode, but the effect is always to open it for OUTPUT.

78 PC-BASIC

5.12. Graphics
Statement Description
CIRCLE Draw an ellipse or arc section
DRAW Draw a shape defined by a Graphics Macro Language string
GET Store a screen area as a sprite
LINE Draw a line segment
PAINT Flood-fill a connected region
PSET Put a pixel
PRESET Change a pixel to background attribute
PUT Draw a sprite to the screen
SCREEN Change the video mode
VIEW Set the graphics viewport
WINDOW Set logical coordinates
Function Description
POINT Graphical pointer coordinates
POINT Pixel attribute
PMAP Convert between physical and logical coordinates

Graphics

Language guide 79

5.13. Sound
Statement Description
BEEP Beep the speaker
BEEP Speaker switch
NOISE Generate noise
PLAY Play a tune encoded in Music Macro Language
SOUND Generate a tone
SOUND Sound switch
Function Description
PLAY Length of the background music queue

80 PC-BASIC

5.14. Joystick and pen
Statement Description
STRIG Joystick switch
Function Description
PEN Status of light pen
STICK Coordinate of joystick axis
STRIG Status of joystick fire button

Joystick and pen

Language guide 81

/home/rob/Projects/basic-project/www/pcbasic/doc/2.0/STRIG-switch
/home/rob/Projects/basic-project/www/pcbasic/doc/2.0/STRIG-switch

5.15. Disks and DOS
The SHELL statement is, by default, disabled; this is to avoid unpleasant surprises. In GW-
BASIC under MS-DOS, SHELL opens a DOS prompt or executes commands in it. The
command shells of modern operating systems work differently than those of DOS; in
particular, it is impossible to retrieve changes in the environment variables, so that many use
cases of SHELL simply would not work; for example, changing the current drive on Windows.
Moreover, Unix shells have a syntax that is completely different from that of DOS. You can,
however, enable SHELL by setting the shell=native option.

Statement Description
CHDIR Change current directory
FILES List the files in the current directory
KILL Delete a file on a disk device
MKDIR Create a new directory
NAME Rename a file on disk
RMDIR Remove a directory
ENVIRON Set a shell environment string
SHELL Enter a DOS shell
Function Description
ENVIRON$ String from shell environment table

82 PC-BASIC

/home/rob/Projects/basic-project/www/pcbasic/doc/2.0/SHELL

5.16. Serial communications
Statement Description
GET Read bytes from a serial port
PUT Write bytes to a serial port
TERM Open the terminal emulator

Serial communications

Language guide 83

5.17. Event handling
Event trapping allows to define subroutines which are executed outside of the normal course
of operation. Events that can be trapped are:

• Time intervals (ON TIMER)
• Keypresses (ON KEY)
• Serial port input (ON COM)
• Music queue exhaustion (ON PLAY)
• Joystick triggers (ON STRIG)
• Light pen activation (ON PEN)

Event trapping subroutines are defined as regular subroutines. At the RETURN statement, the
normal course of program execution is resumed. Event trapping can be switched on and off
or paused temporarily with statements of the form PEN ON , PEN OFF , PEN STOP . Event
trapping only takes place during program execution and is paused while the program is in an
error trap. If an event occurs while event-trapping is paused, then the event is triggered
immediately when event trapping is resumed.

Statement Description
COM Manage serial port event trapping
KEY Manage keyboard event trapping
KEY Define key to trap in keyboard event trapping
ON Define event-trapping subroutine
PEN Manage light pen event trapping
PLAY Manage music queue event trapping
STRIG Manage joystick event trapping
TIMER Manage timer event trapping

84 PC-BASIC

5.18. Error handling
Normally, any error will interrupt program execution and print a message on the console
(exceptions are Overflow and Division by zero , which print a message but do not
interrupt execution). It is possible to handle errors more graciously by setting an error-
handling routine with the ON ERROR GOTO line_number statement. The error-handling routine
starts at the given line number line_number and continues until a RESUME statement is
encountered. Error trapping is in effect both when a program is running and in direct mode.
Error trapping is switched off with the ON ERROR GOTO 0 statement. If an error occurs, or
error trapping is switched off, while the program is executing an error-trapping routine, the
program terminates and an error message is shown.

Statement Description
ERROR Raise an error
ON ERROR Define an error handler
RESUME End error handler and return to normal execution
Function Description
ERR Error number of last error
ERL Line number of last error

Error handling

Language guide 85

5.19. User-defined functions
Statement Description
DEF FN Define a new function
Function Description
FN User-defined function

86 PC-BASIC

5.20. Date and time
Statement Description
DATE$ Set the system date
TIME$ Set the system time
Function Description
DATE$ System date as a string
TIME$ System time as a string
TIMER System time in seconds since midnight

Date and time

Language guide 87

5.21. Including data in a program
Statement Description
DATA Define data to be used by the program
READ Retrieve a data entry
RESTORE Reset the data pointer

88 PC-BASIC

5.22. Memory and machine ports
Only selected memory ranges and selected ports are emulated in PC-BASIC. Some of the
most commonly accessed regions of memory are emulated and can be read and
(sometimes) written. There is read and write support for video memory, font RAM and
selected locations of the low memory segment, including the keyboard buffer. Additionally,
there is read support for font ROM, variable, array and string memory, FIELD buffers as well
as the program code itself. Writing into the program code is disabled by default, but can be
enabled with the allow-code-poke option. A number of machine ports related to keyboard
input and video modes are supported as well.

Statement Description
BLOAD Load a binary file into memory
BSAVE Save a memory region to file
CLEAR Clears BASIC memory
DEF SEG Set the memory segment
OUT Write a byte to a machine port
POKE Write a byte to a memory location
WAIT Wait for a value on a machine port
Function Description
FRE Amount of free memory
INP Byte at machine port
PEEK Byte at memory address
VARPTR Memory address of variable
VARPTR$ Byte representation of length and memory address of variable

Memory and machine ports

Language guide 89

5.23. Features not yet implemented
The following language elements are not currently supported in PC-BASIC. The keyword
syntax is supported, so no Syntax error should be raised if the statements or functions are
used correctly. However, the statements do nothing and the functions return zero or the
empty string.

These language elements may be implemented in future versions of PC-BASIC.

Statement Description PC-BASIC implementation
MOTOR Turn on cassette motor Do nothing
Function Description PC-BASIC implementation
ERDEV Device error value Return 0
ERDEV$ Name of device raising error Return ""
EXTERR Extended error information from DOS Return 0

90 PC-BASIC

5.24. Unsupported features
GW-BASIC was a real-mode DOS program, which means that it had full control over an IBM-
compatible 8086 computer. It had direct access to all areas of memory and all devices. Some
BASIC programs used this fact, by using machine-code subroutines to perform tasks for
which BASIC did not provide support. PC-BASIC runs on modern machines which may be
based on completely different architectures and do not allow applications to access the
memory directly. Therefore, it is not possible to run machine code on PC-BASIC. If you need
machine code, you'll need to use full CPU emulation such as provided by DOSBox, Bochs or
VirtualBox.

Similarly, the IOCTL functionality depends on an MS-DOS interrupt and sends a device
control string to any DOS device driver. The syntax of such strings is device-dependent.
Since PC-BASIC emulates neither DOS nor whatever device might be parsing the control
string, it is not possible to use such functionality.

The following language elements are therefore not supported in PC-BASIC. The keyword
syntax is supported, so no Syntax error should be raised if the statements or functions are
used correctly. However, the statements either do nothing or raise Illegal function call ;
the functions return zero or the empty string or raise Illegal function call .

Statement Description PC-BASIC implementation
CALL Call a machine code subroutine Do nothing
CALLS Call a machine code subroutine Do nothing
DEF USR Define a machine code function Do nothing
IOCTL Send a device control string to a device Raise Illegal function call
Function Description PC-BASIC implementation
IOCTL$ Device response to IOCTL Raise Illegal function call
USR Machine code function Raise Illegal function call

Unsupported features

Language guide 91

6. Language reference
This documentation describes the PC-BASIC language, which aims to faithfully emulate GW-
BASIC 3.23, IBM Advanced BASIC, IBM Cartridge BASIC and Tandy 1000 GW-BASIC.

Differences with the original languages do arise, and where this is the case they are
documented.

Please note that Microsoft's official documentation for the original languages is rather hit-
and-miss; it leaves several features undocumented and incorrectly describes others. To
avoid making the same errors, the present documentation was written from scratch with
reference to the actual behaviour. The errors in this document are therefore all my own.
Please contact me if you encounter them.

92 PC-BASIC

6.1. Metasyntax
In descriptions of BASIC syntax, the following conventions apply. Exact rendering of the
markup may vary depending on the means used to display this documentation.

bold
Type exactly as shown.

italic

Replace with appropriate metavariable.

[a]
Entities within square brackets are optional.

{ a | b }
Disjunct alternatives of which one must be chosen.

[a | b]
Optional disjunct alternatives.

a ...
Preceding entity can be repeated.

Metasyntax

Language reference 93

6.2. Definitions
A program line consists of a line number followed by a compound statement. Program lines
are terminated by a CR or or by the end of the file (optionally through an EOF character).
Anything on a program line after a NUL character is ignored.

A line number is a whole number in the range [0—65535] . Note that the line numbers
65530—65535 cannot be entered from the console or a text program file, but can be part of a

tokenised program file.

A compound statement consists of statements separated by colons:

statement [: statement] ...

An expression takes one of the following forms:

unary_operator {literal | variable | array_element | function}

expression binary_operator expression

(expression)
whose elements are described the sections Literals, Variables, Operators and Functions.

An array element takes the form

array {[|(} numeric_expression [, numeric_expression] ... {)|]}

94 PC-BASIC

6.3. Literals
String literals
String literals are of the following form:

"[characters]{NUL|CR|EOF|"}
where characters is a string of characters. Any character from the current code page can
be used, with the following exceptions, all of which terminate the string literal (aside from
other effects they may have):

• NUL (CHR$(&h00))
• CR (CHR$(&h0D))
• EOF (CHR$(&h1A))
• " (CHR$(&h22))

Strings are also legally terminated by the end of the file in the absence of an EOF character.

Apart from these, string literals should not contain any of the characters in the ASCII range
&h0D — &h1F , which lead to unpredictable results. There is no escaping mechanism. To

include one of the above characters in a string, use string concatenation and the CHR$
function.

Numeric literals
Numeric literals have one of the following forms:

[+|-] [0|1|2|3|4|5|6|7|8|9]... [.][0|1|2|3|4|5|6|7|8|9]...
[{E|e|D|d}[+|-][0|1|2|3|4|5|6|7|8|9]...] |#|!|%]

&{H|h}[0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F|a|b|c|d|e|f]...

&[O|o] [0|1|2|3|4|5|6|7]...

Hexadecimal literals must not contain spaces, but decimal and octal literals may. The o
character in octal literals is optional: they can be specified equally as &o777 or &777 .

Hexadecimal and octal literals denote integers and do not include a sign. They must range
between [&h0 — &hFFFF], of which the range [&h8000 — &hFFFF] is interpreted as a two's
complement negative integer; for example, &hFFFF = -1 . Signs can appear left of the &
but these form an expression and are not part of the literal itself.

Literals

Language reference 95

Floating-point literals must be specified in decimal notation. The decimal separator is the
point. A base-10 exponent may be specified after E in single-precision floats, or after D in
double-precision floats. Trailing % is ignored and does not indicate an integer literal. Trailing
! or # mark the literal as single- or double-precision, respectively.

Examples of valid numeric literals are -1 42 42! 42# 1.3523523 .235435 -.3 3.
. .e .D 1.1e+7 1.1d+7 1e2 1e-2 &7 &hffff &O20 &h & 65537% 1.1%

Note that expressions such as &o-77 are legal; these are however not negative octals but
rather the expression &o (empty octal; zero) less 77 (decimal 77).

96 PC-BASIC

6.4. Variables
Variable names must start with a letter; all characters of the variable name (except the sigil)
must be letters A—Z , figures 0—9 , or a dot . Only the first 40 characters in the name are
significant. A variable name must not be identical to a reserved word or a reserved word plus
sigil. Therefore, for example, you cannot name a variable TO! but you can name it AS! .
Variable names may contain any reserved word. Variable names may also start with a
reserved word, with the exception of USR and FN . Thus, FNORD% and USRNME$ are not
legal variable names while FRECKLE% and LUSR$ are.

For each name, four different variables may exist corresponding to the four types. That is,
you can have A$, A% , A! and A# as different variables. Which one of those is also
known as A depends on the settings in DEFINT / DEFDBL / DEFSNG / DEFSTR . By default, A
equals the single-precision A! .

Furthermore, the arrays A$() , A%() , A!() , A#() are separate from the scalar variables
of the same name.

Types and sigils
PC-BASIC recognises four variable types, distinguished by their sigil or type character, the
last character of the variable's full name:

sigil type size range precision
$ string 3 bytes

plus
allocated
string
space

0—255 characters

% integer 2 bytes -32768—32767 exact
! single-

precision
float

4 bytes ±2.938726·10-39—±1.701412·1038 ~6
significant
figures

double-
precision
float

8 bytes ±2.938735877055719·10-39—±1.701411834604692·1038 ~16
significant
figures

Note that double-precision floats can hold more decimals than single-precision floats, but not
larger or smaller numbers.

Variables

Language reference 97

While all integers are signed, some statements will interpret negative integers as their two's
complement.

Arrays
Arrays are indexed with round or square brackets; even mixing brackets is allowed. The
following are all legal array elements: A[0] , A(0) , A(0] , A[0) . Multidimensional arrays
are specified by separating the indices with commas: A(0, 0) , A[0, 0, 0] , etc.

By default, arrays are indexed from 0 . This can be changed to 1 using OPTION BASE 1 .

Arrays can be allocated by specifying the largest allowed index using DIM . If all indices of
the array are 10 or less, they need not be explicitly allocated. The first access of the array
(read or write) will automatically allocate it with a maximum index of 10 and the same
number of indices as in the first access. To re-allocate an array, the old array must first be
deleted with CLEAR or ERASE .

Multi-dimensional arrays are stored in column-major order, such that A%(2,0) immediately
follows A%(1,0) .

Conversions
PC-BASIC will implicitly convert between the three numerical data types. When a value of
one type is assigned to a variable, array element or parameter of another type, it is converted
according to the following rules:

• Single- and double-precision floats are converted to integer by rounding to the
nearest whole number. Halves are rounded away from zero. If the resulting whole
number is outside the allowed range for integers, Overflow is raised.

• Double-precision floats are converted to single-precision floats by Gaussian
rounding of the mantissa, where the new least significant bit of the mantissa is
rounded up if the clipped-off binary fraction is greater than one-half; halves are
rounded to even.

• Integers are converted to their exact representation as single- or double-precision
floats.

• Single-precision floats are converted to their exact representation as double-
precision floats.

• There is no implicit conversion between strings and any of the numeric types.
Attempting to assign a string value to a numeric variable, array element or
parameter (or vice versa) will raise Type mismatch .

98 PC-BASIC

6.5. Operators

Order of precedence
The order of precedence of operators is as follows, from tightly bound (high precedence) to
loosely bound (low precedence):

12. ^
11. * /

10. \
9. MOD

8. + - (unary and binary)
7. = <> >< < > <= =< >= =>

6. NOT (unary)
5. AND
4. OR
3. XOR
2. EQV
1. IMP

Expressions within parentheses () are evaluated first. All binary operators are left-
associative: operators of equal precedence are evaluated left to right.

Examples
• Exponentiation is more tightly bound than negation: -1^2 = -(1^2) = -1 but

(-1)^2 = 1 .
• Exponentiation is left-associative: 2^3^4 = (2^3)^4 = 4096 .

Errors
• If any operator other than + , - or NOT is used without a left operand, Syntax

error is raised.
• At the end of a statement, if any operator is used without a right operand, Missing

operand is raised. If this occurs elsewhere inside a statement, such as within
brackets, Syntax error is raised.

Operators

Language reference 99

Mathematical operators
Mathematical operators operate on numeric expressions only. Note however that + can
take the role of the string concatenation operator if both operands are strings.

Code Operation Result
x ^ y Exponentiation x raised to the power of y
x * y Multiplication Product of x and y

x / y Division Quotient of x and y

x \ y Truncated division Integer quotient of x and y

x MOD y Modulo Integer remainder of x by y (with the sign of x)
x + y Addition Sum of x and y

x - y Subtraction Difference of x and y

+ y Unary Plus Value of y
- y Negation Negative value of y

Notes
• Where necessary, the result of the operation will be upgraded to a data type able

to hold the result. For example, dividing integers 3 by 2 will yield a single-precision
1.5.

• However, the exponentiation operator ^ will give at most a single-precision result
unless the double option is used.

• The expression 0^0 will return 1 and not raise an error, even though,
mathematically, raising zero to the zeroeth power is undefined.

Errors
• If either operand is a string, Type mismatch will be raised. The exception is +

which will only raise Type mismatch if either but not both operands are strings.
• If y=0 , x / y , x MOD y and x \ y will raise Division by zero .
• If x=0 and y<0 , x^y will raise Division by zero .
• If the result of any operation is too large to fit in a floating-point data type,

Overflow is raised.
• If operands or result of \ or MOD are not in [-32768–32767] , Overflow is

raised.
• If x<0 and y is a fractional number, x ^ y will raise Illegal function call .

100 PC-BASIC

Relational operators
Relational operators can operate on numeric as well as string operands; however, if one
operand is string and the other numeric, Type mismatch is raised.

Relational operators return either 0 (for false) or -1 for true.

Code Operation Result
= Equal True if a equals b, false otherwise.
<> >< Not equal False if a equals b, true otherwise.
< Less than True if a is less than b, false otherwise.
> Greater than True if a is greater than b, false otherwise.
<= =< Less than or equal False if a is greater than b, true otherwise.
>= => Greater than or equal False if a is less than b, true otherwise.

When operating on numeric operands, both operands are compared as floating-point
numbers according to the usual ordering of numbers. The equals operator tests for equality
to within machine precision for the highest-precision of the two operator types.

When comparing strings, the ordering is as follows.

• Two strings are equal only if they are of the same length and every character code
of the first string agrees with the corresponding character code of the second. This
includes any whitespace or unprintable characters.

• Each character position of the strings is compared starting with the leftmost
character. When a pair of different characters is encountered, the string with the
character of lesser code point is less than the string with the character of greater
code point.

• If the strings are of different length, but equal up to the length of the shorter string,
then the shorter string is less than the longer string.

Bitwise operators
PC-BASIC has no Boolean type and does not implement Boolean operators. It does,
however, implement bitwise operators.

Bitwise operators operate on numeric expressions only. Floating-point operands are rounded
to integers before being used.

Operators

Language reference 101

Code Operation Result
NOT y Complement -y-1
x AND y Bitwise conjunction The bitwise AND of x and y

x OR y Bitwise disjunction The bitwise OR of x and y

x XOR y Bitwise exclusive or The bitwise XOR of x and y

x EQV y Bitwise equivalence NOT(x XOR y)
x IMP y Bitwise implication NOT(x) OR y

These operators can be used as Boolean operators only if -1 is used to represent true
while 0 represents false. Note that PC-BASIC represents negative integers using the two's
complement, so NOT 0 = -1 . The Boolean interpretation of bitwise operators is given in the
table below.

Code Operation Result
NOT y Logical negation True if y is false and vice versa
x AND y Conjunction Only true if both x and y are true
x OR y Disjunction Only false if both x and y are false
x XOR y Exclusive or True if the truth values of x and y differ
x EQV y Equivalence True if the truth values of x and y are the same
x IMP y Implication True if x is false or y is true

Be aware that when used on integers other than 0 and -1 , bitwise operators can not be
interpreted as Boolean operators. For example, 2 AND 1 returns 0 .

Errors
• If either operand is a string, Type mismatch will be raised.
• If the operands or result are not in [-32768–32767] , Overflow is raised.

String operators
The string concatenation operator is + . It has a binary as well as a unary form. The unary
minus may also be used on strings, but has no effect.

Code Operation Result
x + y Concatenation The string formed by x followed by y

+ y Unary Plus Value of y
- y Unary Minus Value of y

102 PC-BASIC

Errors
• If either (but not both) operands to a concatenation are numeric, Type mismatch

will be raised.
• If LEN(x) + LEN(y) > 255 , x + y will raise String too long .

Operators

Language reference 103

6.6. Functions
Functions can only be used as part of an expression within a statement; they may take input
values between parentheses and produce a return value. For example, in PRINT ABS(-1)
the ABS function is used in an expression within a PRINT statement; in Y = SQR(X) + 2
the SQR function is used in an expression within a LET statement.

Some reference works also use terms such as system variable for functions that do not take
an input, presumably since in the GW-BASIC syntax such functions have no parentheses, in
contrast to the languages in the C family (and indeed some modern BASICs). However, this
is simply the GW-BASIC syntax for functions without inputs. For example, one can do DEF
FNA=1: PRINT FNA in which no parentheses are allowed.

ABS
y = ABS(x)

Returns the absolute value of x if x is a number and the value of x if x is a string.

Parameters
• x is an expression.

ASC
val = ASC(char)

Returns the code point (ASCII value) for the first character of char .

Parameters
• char is an expression with a string value.

Errors
• char has a numeric value: Type mismatch .
• char equals "" : Illegal function call .

104 PC-BASIC

ATN
y = ATN(x)

Returns the inverse tangent of x .

Parameters
• x is a numeric expression that gives the angle in radians.

Notes
• Unless PC-BASIC is run with the double option, this function returns a single-

precision value.
• ATN(x) differs in the least significant digit from GW-BASIC.

Errors
• x has a string value: Type mismatch .

CDBL
y = CDBL(x)

Converts the numeric expression x to a double-precision value.

Errors
• x has a string value: Type mismatch .

CHR$
char = CHR$(x)

Returns the character with code point x .

Parameters
• x is a numeric expression in the range [0—255] .

Errors
• x has a string value: Type mismatch .
• x is not in [-32768—32767] : Overflow .
• x is not in [0—255] : Illegal function call .

Functions

Language reference 105

CINT
y = CINT(x)

Converts the numeric expression x to a signed integer. Halves are rounded away from
zero, so that e.g. CINT(2.5) = 3 and CINT(-2.5) = -3 .

Errors
• x has a string value: Type mismatch .
• x is not in [-32768—32767] : Overflow .

COS
cosine = COS(angle)

Returns the cosine of angle . Unless PC-BASIC is run with the double option, this function
returns a single-precision value.

Parameters
• angle is a numeric expression that gives the angle in radians.

Notes
• The return value usually differs from the value returned by GW-BASIC in the least

significant figure.

Errors
• angle has a string value: Type mismatch .

CSNG
y = CSNG(x)

Converts the numeric expression x to a single-precision value by Gaussian rounding.

Errors
• x has a string value: Type mismatch .

106 PC-BASIC

CSRLIN
y = CSRLIN

Returns the screen row of the cursor on the active page. The return value is in the range
[1—25] .

Notes
• This function takes no arguments.

CVI
y = CVI(s)

Converts a two-byte string to a signed integer.

Parameters
• s is a string expression that represents an integer using little-endian two's

complement encoding. Only the first two bytes are used.

Errors
• s has a numeric value: Type mismatch .

CVS
y = CVS(s)

Converts a four-byte string to a single-precision floating-point number.

Parameters
• s is a string expression that represents a single-precision number in Microsoft

Binary Format. Only the first four bytes are used.

Errors
• s has a numeric value: Type mismatch .

Functions

Language reference 107

CVD
y = CVD(s)

Converts an eight-byte string to a double-precision floating-point number.

Parameters
• s is a string expression that represents a double-precision number in Microsoft

Binary Format. Only the first eight bytes are used.

Errors
• s has a numeric value: Type mismatch .

DATE$ (function)
s = DATE$

Returns the system date as a string in the format "mm-dd-yyyy" .

Notes
• This function takes no arguments.

108 PC-BASIC

ENVIRON$
value = ENVIRON[]$(x)

Returns an environment variable.

Parameters
x is an expression.

• If x has a string value, returns the value for the environment variable x or the
empty string if no variable with the name x is set in the environment table. The
environment variable must be an ASCII string and will be converted to uppercase
on case-sensitive systems.

• If x has a numeric value, it must be in [1—255] . Returns the x th entry in the
environment table.

Errors
• x is the empty string: Illegal function call .
• x contains non-ASCII characters: Illegal function call .
• x is a number not in [-32768—32767] : Overflow .
• x is a number not in [1—255] : Illegal function call .

EOF
is_at_end = EOF(file_num)

Returns -1 if file with number file_num has reached end-of-file; 0 otherwise. The file must
be open in INPUT or RANDOM mode. EOF(0) returns 0.

Notes
• If file_num is open to KYBD: , performs a blocking read and returns -1 if

CTRL + Z is entered, 0 otherwise. The character entered is then echoed to the
console.

Errors
• file_num has a string value: Type mismatch .
• file_num is a number not in [-32768—32767] : Overflow .
• file_num is a number not in [0—255] : Illegal function call .
• file_num is not 0 or the number of an open file: Bad file number .
• The file with number file_num is in OUTPUT or APPEND mode: Bad file

mode .

Functions

Language reference 109

ERDEV
zero = ERDEV

Returns 0.

Notes
• In GW-BASIC, returns the value of a device error.
• This function is not implemented in PC-BASIC.
• This function takes no arguments.

ERDEV$
empty = ERDEV[]$

Returns the empty string.

Notes
• In GW-BASIC, returns the device name of a device error.
• This function is not implemented in PC-BASIC.
• This function takes no arguments.

ERL
error_line = ERL

Returns the line number where the last error was raised.

Notes
• If the error was raised by a direct statement, returns 65535.
• If no error has been raised, returns 0.
• This function takes no arguments.

ERR
error_code = ERR

Returns the number of the last error.

Notes
• If no error has been raised, returns 0.
• If the last error was a Syntax error raised by a direct statement, returns 0.
• This function takes no arguments.

110 PC-BASIC

EXP
y = EXP(x)

Returns the exponential of x , i.e. e to the power x .

Parameters
• x is a number- valued expression.

Notes
• Unless PC-BASIC is run with the double option, this function returns a single-

precision value.
• The return value sometimes differs in the least significant digit from GW-BASIC.

For large values of x , the difference may be 3 digits.

Errors
• x has a string value: Type mismatch .
• x is larger than the natural logarithm of the maximum single-precision value:

Overflow .

EXTERR
zero = EXTERR(x)

Returns 0.

Parameters
• x is a numeric expression in [0—3] .

Notes
• In GW-BASIC, this function returns extended error information from MS-DOS.
• This function is not implemented in PC-BASIC.

Errors
• x has a string value: Type mismatch .
• x is not in [-32768—32767] : Overflow .
• x is not in [0—3] : Illegal function call .

Functions

Language reference 111

FIX
whole = FIX(number)

Returns number truncated towards zero.

Parameters
• number is a numeric expression.

Notes
• FIX truncates towards zero: it removes the fractional part. By contrast, INT

truncates towards negative infinity.

Errors
• number is a string expression: Type mismatch .

FN
result = FN[]name [(arg_0 [, arg_1] ...)]

Evaluates the user-defined function previously defined with DEF FN name . Spaces between
FN and name are optional.

Parameters
• name is the name of a previously defined function.
• arg_0, arg_1, ... are expressions, given as parameters to the function.

Errors
• No function named name is defined: Undefined user function .
• The number of parameters differs from the function definition: Syntax error .
• The type of one or more parameters differs from the function definition: Type

mismatch .
• The return type is incompatible with the function name's sigil: Type mismatch .
• The function being called is recursive or mutually recursive: Out of memory .

112 PC-BASIC

FRE
free_mem = FRE(x)

Returns the available BASIC memory.

Parameters
x is an expression.

• If x has a numeric value, it is ignored.
• If x has a string value, garbage collection is performed before returning available

memory.

HEX$
hex_repr = HEX$(x)

Returns a string with the hexadecimal representation of x .

Parameters
• x is a numeric expression in [-32768—65535] . Values for negative x are shown

as two's-complement.

Errors
• x is not in [-32768—65535] : Overflow .
• x has a string value: Type mismatch .

INKEY$
key = INKEY$

Returns one key-press from the keyboard buffer. If the keyboard buffer is empty, returns the
empty string. Otherwise, the return value is a one- or two- character string holding the e-
ASCII code of the pressed key.

Notes
• This function takes no arguments.
• When a function key F1 – F10 is pressed, INKEY$ will return the letters of the

associated macro — unless this macro has been set to empty with the KEY
statement, in which case it returns the e-ASCII code for the function key.

Functions

Language reference 113

INP
code = INP(port)

Returns the value of an emulated machine port.

Parameters
port is a numeric expression in [0—65535] .

port Effect
&h60 Returns the keyboard scancode for the current key pressed or the last key

released. The scancodes returned by INP(&h60) are those listed in the keyboard
scancodes table. If a key is currently down, the return value is its scancode. If no
key is down, the return value is the scancode of the last key released,
incremented by 128.

&h201 Returns the value of the game port (joystick port). This value is constructed as
follows:

Bit Meaning
0 joystick 2 x-axis
1 joystick 1 y-axis
2 joystick 1 x-axis
3 joystick 2 y-axis
4 joystick 2 button 1
5 joystick 1 button 2
6 joystick 1 button 1
7 joystick 2 button 2

The button bits are 0 when the button is fired, 1 otherwise. The axis values are
normally 0 but are set to 1 by OUT &h201, x and then fall back to 0 after a delay.
The longer the delay, the higher the axis value.

other
values

Returns zero.

Notes
• Only a limited number of machine ports are emulated in PC-BASIC.

Errors
• port is not in [-32768—65535] : Overflow .
• port has a string value: Type mismatch .

114 PC-BASIC

INPUT$
chars = INPUT[]$ (num_chars [, [#] file_num])

Returns a string of num_chars characters from the keyboard or, if file_num is provided,
from a text file.

Parameters
• num_chars is a numeric expression in [1—255] .
• file_num is a numeric expression that returns the number of a text file opened in

INPUT mode. The # is optional and has no effect.

Notes
• This is a blocking read. It will wait for characters if there are none in the buffer.
• All control characters except Ctrl + Break , Ctrl + Scroll Lock and Pause are

passed to the string by INPUT$. Ctrl + Break and Ctrl + Scroll Lock break
execution whereas Pause halts until another key is pressed (and not read).

• When reading from the keyboard directly or through KYBD: , arrow keys, Del ,
Home , End , Pg Up , Pg Dn are passed as NUL characters. Function keys are

ignored if they are event-trapped, otherwise function-key macro replacement is
active as normal.

Errors
• num_chars is not in [-32768—32767] : Overflow .
• num_chars is not in [1—255] : Illegal function call .
• file_num is not an open file: Bad file number .
• file_num is less than zero: Illegal function call .
• file_num is greater than 32767 : Overflow .
• file_num is not open for INPUT : Bad file mode .
• num_chars or file_num are strings: Type mismatch .
• file_num is open to a COM port and this is the first INPUT , LINE INPUT or

INPUT$ call on that port since the buffer has filled up completely (i.e.
LOF(file_num) has become zero): Communication buffer overflow .

Functions

Language reference 115

INSTR
position = INSTR([start,] parent, child)

Returns the location of the first occurrence of the substring child in parent .

Parameters
• parent and child are string expressions.
• start is a numeric expression in [1—255] , specifying the starting position from

where to look; if not specified, the search starts at character 1.

Notes
• If child is not a substring of parent occurring at or before start , INSTR

returns 0.

Errors
• start has a string value or parent or child have numeric values: Type

mismatch .
• start is not in [-32768—32767] : Overflow .
• start is not in [1—255] : Illegal function call .

INT
whole = INT(number)

Returns number truncated towards negative infinity.

Parameters
• number is an expression.

Notes
• FIX truncates towards zero: it removes the fractional part. By contrast, INT

truncates towards negative infinity.
• If number is a string expression, INT returns its value unchanged.

116 PC-BASIC

IOCTL$
result = IOCTL[]$ ([#] file_num)

Raises Illegal function call .

Notes
• In GW-BASIC, IOCTL$ reads the reply to IOCTL from a device.
• This function is not implemented in PC-BASIC.

Errors
• file_num has a string value: Type mismatch .
• file_num is not in [-32768—32767] : Overflow .
• file_num is not an open file: Bad file number .
• Otherwise: Illegal function call

LEFT$
child = LEFT$(parent, num_chars)

Returns the leftmost num_chars characters of parent .

Parameters
• parent is a string expression.
• num_chars is a numeric expression in [0—255] .

Notes
• If num_chars is zero or parent is empty, LEFT$ returns an empty string.
• If num_chars is greater than the length of parent , returns parent .

Errors
• parent has a numeric value or num_chars has a string value: Type mismatch .
• num_chars is not in [-32768—32767] : Overflow .
• num_chars is not in [0—255] : Illegal function call .

Functions

Language reference 117

LEN
length = LEN(string)

Returns the number of characters in string .

Parameters
• string is a string expression.

Errors
• string has a number value: Type mismatch .

118 PC-BASIC

LOC
location = LOC(file_num)

Returns the current location in the file opened under number file_num .

• If the file is opened for INPUT , OUTPUT or APPEND , LOC returns the number of
128-byte blocks read or written since opening the file.

• If the file is opened for RANDOM , LOC returns the record number last read or
written.

• If the file is opened to a COM device, LOC returns the number of characters in the
input buffer, with a maximum of 255.

• If the file is opened to KYBD: , LOC returns 0.

Parameters
• file_num is a numeric expression in the range [0—255] .

Notes
• file_num must not be preceded by a # .
• In OUTPUT or APPEND mode, before any writes LOC returns 0. After the 128th

character is written, LOC returns 1.
• In INPUT mode, before any reads LOC returns 1. After the 129th character is

read, LOC returns 2.
• If text-encoding is set, characters may be encoded by sequences of more than

one byte. LOC will return the number of bytes rather than the number of encoded
characters.

Errors
• file_num has a string value: Type mismatch .
• file_num is not in [-32768—32767] : Overflow .
• file_num is not in [0—255] : Illegal function call .
• file_num is not an open file: Bad file number .
• file_num is open to a LPT device: Bad file mode .

Functions

Language reference 119

LOF
length = LOF(file_num)

Returns the number of bytes in the file open under file_num .

Parameters
• file_num is a numeric expression in the range [0—255] .

Notes
• If file_num is open to a COM: device, LOF returns the number of bytes free in

the input buffer.

Errors
• file_num has a string value: Type mismatch .
• file_num is not in [-32768—32767] : Overflow .
• file_num is not in [0—255] : Illegal function call .
• file_num is not an open file: Bad file number .
• file_num is open to a LPT device: Bad file mode .

Notes
• If text-encoding is set, characters may be encoded by sequences of more than

one byte. LOF will return the number of bytes rather than the number of encoded
characters.

120 PC-BASIC

LOG
y = LOG(x)

Returns the natural logarithm of x .

Parameters
• x is a numeric expression greater than zero.

Notes
• Unless PC-BASIC is run with the double option, this function returns a single-

precision value.
• LOG(x) can differ from GW-BASIC by 1 in the least significant digit.

Errors
• x has a string value: Type mismatch .
• x is zero or negative: Illegal function call .

LPOS
position = LPOS(printer_number)

Returns the column position for a printer.

Parameters
• printer_number is a numeric expression in [0—3] . If it is 0 or 1, the position for

LPT1: is returned. If it is 2, LPT2: ; 3, LPT3: .

Notes
• When entering direct mode, LPT1: (but not other printers) is flushed and its

position is reset to 1.

Errors
• printer_number has a string value: Type mismatch .
• printer_number is not in [-32768—32767] : Overflow .
• printer_number is not in [0—3] : Illegal function call .

Functions

Language reference 121

MID$ (function)
substring = MID$(string, position [, length])

Returns a substring of string starting at position , counting from 1. The substring has
length length if specified. If length is not specified, the substring extends to the end of
the string.

Parameters
• string is a string expression.
• position is a numeric expression between 1 and the string length, inclusive.
• length is a numeric expression in [0—255] .

Errors
• string has a number value or position or length have string values: Type

mismatch .
• position or length are not in [-32768—32767] : Overflow .
• position is not in [1—255] : Illegal function call .
• length is not in [0—255] : Illegal function call .

MKD$
bytes = MKD$(double)

Returns the internal 8-byte Microsoft Binary Format representation of a double- precision
number.

Errors
• double has a string value: Type mismatch .

MKI$
bytes = MKI$(int)

Returns the internal 2-byte little-endian representation of an integer.

Errors
• int has a string value: Type mismatch .
• int is not in [-32768—32767] : Overflow .

122 PC-BASIC

MKS$
bytes = MKS$(single)

Returns the internal 8-byte Microsoft Binary Format representation of a single- precision
number.

Errors
• single has a string value: Type mismatch .

OCT$
octal = OCT$(x)

Returns a string with the octal representation of x .

Parameters
• x is a numeric expression in [-32768—65535] . Values for negative x are shown

as two's-complement.

Errors
• x has a string value: Type mismatch .
• x is not in [-32768—65535] : Overflow .

Functions

Language reference 123

PEEK
value = PEEK(address)

Returns the value of the memory at segment * 16 + address where segment is the current
segment set with DEF SEG .

Parameters
• address is a numeric expression in [-32768—65535] . Negative values are

interpreted as their two's complement.

Notes
• The memory is only partly emulated in PC-BASIC. See Memory model for

supported addresses. Outside emulated areas, PEEK returns 0.
• Values for particular memory address can be preset on the command line using

the peek option. This can be used for compatibility with old programs. These
values will override video or data segment values, if they are in those locations.

Errors
• address has a string value: Type mismatch .
• address is not in [-32768—65535] : Overflow .

124 PC-BASIC

PEN (function)
x = PEN(mode)

Reads the light pen. What this function returns depends on mode :

mode Return value
0 Boolean; whether the light pen has been down since last poll.
1 x coordinate of last pen down position
2 y coordinate of last pen down position
3 Boolean; whether the pen is currently down
4 x coordinate of current pen position
5 y coordinate of current pen position
6 character row coordinate of last pen down position
7 character column coordinate of last pen down position
8 character row coordinate of current pen position
9 character column coordinate of current pen position

Parameters
• mode is a numeric expression in [0—9] .

Notes
• In PC-BASIC, for pen down read mouse button pressed. For pen position read

mouse pointer position.

Errors
• mode has a string value: Type mismatch .
• mode is not in [-32768—32767] : Overflow .
• mode is not in [0—9] : Illegal function call .

Functions

Language reference 125

PLAY (function)
length = PLAY(voice)

Returns the number of notes in the background music queue. The return value is in [0—32] .

Parameters
• voice is a numeric expression in [0—255] . If syntax={pcjr|tandy} , indicates

for which tone voice channel the number of notes is to be returned. If voice is not
in [0—2] , the queue for voice 0 is returned. For other choices of syntax , the
voice value has no effect.

Notes
• There are at most 32 notes in the music queue. However, unless the articulation is

set to legato, there are short gaps between each note; these are counted as
separate notes in the queue. Effectively, the queue length is thus 16 for the default
and staccato articulations and 32 for legato.

Errors
• voice has a string value: Type mismatch .
• voice is not in [0—255] : Illegal function call .
• voice is not in [-32768—32767] : Overflow .

126 PC-BASIC

PMAP
transformed_coord = PMAP(original_coord, fn)

Maps between viewport and logical (WINDOW) coordinates. If no VIEW has been set, the
viewport coordinates are physical coordinates.

Depending on the value of fn , PMAP transforms from logical to viewport coordinates or vice
versa:

fn Return value
0 return viewport x given logical x
1 return viewport y given logical y
2 return logical x given viewport x
3 return logical y given viewport y

Parameters
• fn is a numeric expression in [0—3] .

Notes
• Initially, in text mode, PMAP returns 0.
• In GW-BASIC, PMAP behaves anomalously on SCREEN changes, where it

sometimes returns results as if the last WINDOW setting had persisted. This
behaviour is not implemented in PC-BASIC.

Errors
• Any of the parameters has a string value: Type mismatch .
• A physical coordinate is not in [-32768—32767] : Overflow .
• fn is not in [-32768—32767] : Overflow .
• fn is not in [0—3] : Illegal function call .

Functions

Language reference 127

POINT (current coordinate)
coord = POINT(fn)

Returns a currently active coordinate of the graphics screen. This is usually the last position
at which a pixel has been plotted, the second corner given in a LINE command, or the
centre of the viewport if nothing has been plotted. fn is a numeric expression in [0—3] .

The coordinate returned depends on the value of fn :

fn Return value
0 viewport x
1 viewport y
2 logical x
3 logical y

Parameters
• fn is a numeric expression in [0—3] .

Notes
• In text mode, returns the active coordinate of any previous graphics mode; if no

graphics mode has been active, returns 0.

Errors
• fn has a string value: Type mismatch .
• fn is not in [-32768—32767] : Overflow .
• fn is not in [0—3] : Illegal function call .

128 PC-BASIC

POINT (pixel attribute)
attrib = POINT(x, y)

Returns the attribute of the pixel at logical coordinate x , y .

Parameters
• x , y are numeric expressions in [-32768—32767] .

Notes
• If x , y is outside the screen, returns -1.

Errors
• Function is called in text mode: Illegal function call .
• x or y has a string value: Type mismatch .
• x or y or the physical coordinates they translate into are not in

[-32768—32767] : Overflow .

POS
pos = POS(dummy)

Returns the current cursor column position, in the range [1—80] .

Parameters
• dummy is a valid expression of any type; its value has no effect.

Functions

Language reference 129

RIGHT$
child = RIGHT$(parent, num_chars)

Returns the rightmost num_chars characters of parent . If num_chars is zero or parent is
empty, RIGHT$ returns an empty string. If num_chars is greater than the length of parent ,
returns parent .

Parameters
• parent is a string expression.
• num_chars is a numeric expression in [0—255] .

Errors
• num_chars has a string value: Type mismatch .
• num_chars is not in [-32768—32767] : Overflow .
• num_chars is not in [0—255] : Illegal function call .

130 PC-BASIC

RND
random = RND[(x)]

Returns a pseudorandom number in the interval [0—1) .

Parameters
x is a numeric expression.

• If x is zero, RND repeats the last pseudo-random number.
• If x is greater than zero, a new pseudorandom number is returned.
• If x is negative, x is converted to a single-precision floating-point value and the

random number seed is set to the absolute value of its mantissa. The function
then generates a new pseudorandom numer with this seed. Since the only the
mantissa of x is used, any two values whose ratio is a power of 2 will produce
the same seed. Note that this procedure for generating a new seed differs from
that used by RANDOMIZE .

Notes
• PC-BASIC's RND function generates pseudo-random numbers through a linear

congruential generator with modulo 224, multiplier 214013 and increment
2531011. This exactly reproduces the random numbers of GW-BASIC's RND .

• It should be noted, however, that this is a very poor random number generator: its

parameters imply a recurrence period of 224, meaning that after less than 17
million calls RND will wrap around and start running through the exact same
series of numbers all over again. RND should not be used for cryptography,
scientific simulations or anything else remotely serious.

Errors
• x has a string value: Type mismatch .

Functions

Language reference 131

SCREEN (function)
value = SCREEN(row, column [, fn])

Returns the code point or colour attribute for the character at position row , col .

Parameters
• row is a numeric expression in the range [1—25] .
• col is a numeric expression between 1 and the screen width (40 or 80).
• fn is a numeric expression in [0—255] . If it is zero or not specified, the code

point of the character is returned. If it is non-zero, in text mode the attribute is
returned; in other screens, 0 is returned.

Errors
• Any parameter has a string value: Type mismatch .
• fn is not in [0—255] : Illegal function call .
• fn is not in [-32768—32767] : Overflow .
• row is not inside the current VIEW PRINT area: Illegal function call .
• KEY ON and row=25 : Illegal function call .
• col is not in [1, width] : Illegal function call .

Notes
• In GW-BASIC, the SCREEN function has anomalous error behaviour: constructions

which for other functions would raise Syntax error or Missing operand instead
raise Illegal function call . This behaviour is not replicated in PC-BASIC.

SGN
sign = SGN(number)

Returns the sign of number : 1 for positive, 0 for zero and -1 for negative.

Parameters
• number is a numeric expression.

Errors
• number has a string value: Type mismatch .

132 PC-BASIC

SIN
sine = SIN(angle)

Returns the sine of angle .

Parameters
• angle is a numeric expression giving the angle in radians.

Notes
• Unless PC-BASIC is run with the double option, this function returns a single-

precision value.
• The sine returned usually differs from the value returned by GW-BASIC in the

least significant figure.

Errors
• angle has a string value: Type mismatch .

SPACE$
spaces = SPACE$(number)

Returns a string of number spaces.

Parameters
• number is a numeric expression in [0—255] .

Errors
• number has a string value: Type mismatch .
• number is not in [-32768—32767] : Overflow .
• number is not in [0—255] : Illegal function call .

Functions

Language reference 133

SQR
root = SQR(number)

Returns the square root of number .

Parameters
• number is a numeric expression.

Notes
• Unless PC-BASIC is run with the double option, this function returns a single-

precision value.

Errors
• number has a string value: Type mismatch

STICK
pos = STICK(axis)

Returns a coordinate of a joystick axis. All coordinates returned are in the range [1—254]
with 128 indicating the neutral position.

axis Return value
0 1st joystick x coordinate
1 1st joystick y coordinate
2 2nd joystick x coordinate
3 2nd joystick y coordinate

Parameters
• axis is a numeric expression in [0—3] and indicates which axis to read.

Errors
• axis has a string value: Type mismatch
• axis is not in [-32768—32767] : Overflow .
• axis is not in [0—3] : Illegal function call .

134 PC-BASIC

STR$
repr = STR$(number)

Returns the string representation of number .

Parameters
• number is a numeric expression.

Errors
• number has a string value: Type mismatch .

STRIG (function)
result = STRIG(mode)

Returns the status of the joystick trigger buttons. STRIG returns the following results, all
Boolean values:

mode Return value
0 1st joystick, 1st trigger has been pressed since last poll.
1 1st joystick, 1st trigger is currently pressed.
2 2nd joystick, 1st trigger has been pressed since last poll.
3 2nd joystick, 1st trigger is currently pressed.
4 1st joystick, 2nd trigger has been pressed since last poll.
5 1st joystick, 2nd trigger is currently pressed.
6 2nd joystick, 2nd trigger has been pressed since last poll.
7 2nd joystick, 2nd trigger is currently pressed.

Parameters
• mode is a numeric expression in [0—7] .

Notes
• The STRIG function returns correct results regardless of the STRIG ON status or

whether STRIG(0) has been called first.

Errors
• mode has a string value: Type mismatch .
• mode is not in [-32768—32767] : Overflow .
• mode is not in [0—7] : Illegal function call .

Functions

Language reference 135

STRING$
string = STRING$(length, char)

Returns a string of length times character char .

Parameters
• If char is a numeric expression, it must be in [0—255] and is interpreted as the

code point of the character.
• If char is a string expression, its first character is used.

Errors
• length has a string value: Type mismatch .
• char is the empty string: Illegal function call .
• char or length is not in [-32768—32767] : Overflow .
• char or length is not in [0—255] : Illegal function call .

TAN
tangent = TAN(angle)

Returns the tangent of angle .

Parameters
• angle is a numeric expression giving the angle in radians.

Notes
• Unless PC-BASIC is run with the double option, this function returns a single-

precision value.
• The tangent returned usually differs from the value returned by GW-BASIC in the

least significant figure.
• For angle close to multiples of π/2 , the tangent is divergent or close to zero.

The values returned will have very low precision in these cases.

Errors
• angle has a string value: Type mismatch .

136 PC-BASIC

TIME$ (function)
time = TIME$

Returns the current BASIC time in the form "HH:mm:ss" .

Notes
• This function takes no arguments.

TIMER (function)
seconds = TIMER

Returns the number of seconds since midnight on the internal BASIC clock.

Notes
• TIMER updates in ticks of 1/20 second.
• The least-significant two bytes of TIMER are often used as a seed for the

pseudorandom number generator through RANDOMIZE TIMER . Since these bytes
only take values from a limited set, that's not in fact a particularly good random
seed. However, the pseudorandom number generator included with GW-BASIC
and PC-BASIC is so weak that it should not be used for anything serious anyway.

• This function takes no arguments.

USR
value = USR[n](expr)

Raises Illegal function call .

Parameters
• n is a digit [0—9] .
• expr is an expression.

Notes
• In GW-BASIC, calls a machine-code function and returns its return value.
• This function is not implemented in PC-BASIC.

Errors
• n is not a digit [0—9] : Syntax error .

Functions

Language reference 137

VAL
value = VAL(string)

Returns the numeric value of the string expression string . Parsing stops as soon as the
first character is encountered that cannot be part of a number. If no characters are parsed,
VAL returns zero. See the section on numeric literals for the recognised number formats.

Notes
• Spaces before or even inside a number are ignored: VAL(" 1 0") returns 10 .
• If string contains one of the ASCII separator characters CHR$(28) (file

separator), CHR$(29) (group separator) or CHR$(31) (unit separator), VAL
returns zero. This is not the case with CHR$(30) (record separator). This
behaviour conforms to GW-BASIC.

Errors
• string has a number value: Type mismatch .

VARPTR
pointer = VARPTR({name|#file_num})

Returns the memory address of variable name or of the File Control Block of file number
file_num .

Parameters
• name is a previously defined variable or fully indexed array element.
• file_num is a legal file number.

Notes
• VARPTR can be used with PEEK to read a variable's internal representation.
• If name is an undefined array element, it will be implicitly allocated in the same

way as if it had been used in an expression.

Errors
• name is a scalar that has not been previously defined: Illegal function call .
• file_num has a string value: Type mismatch .
• file_num is not in [1, max_files] , where max_files is the maximum number

of files as set by the max-files option: Bad file number .

138 PC-BASIC

VARPTR$
pointer = VARPTR$(name)

Returns the memory address of variable name in the form of a 3-byte string. name is a fully
indexed array element (which may or may not have been defined) or a previously-defined
scalar variable. The first byte is the length of the record the pointer points to:

2 for integers
3 for strings (length + pointer to string space)
4 for single-precision floats
8 for double-precision floats

The last two bytes are the pointer address (as returned by VARPTR) in little-endian order.

Notes
• If name is an undefined array element, it will be implicitly allocated in the same

way as if it had been used in an expression.

Errors
• name is a scalar that has not been previously defined: Illegal function call .

Functions

Language reference 139

6.7. Statements
A program line is composed of a line number and one or more statements. If multiple
statements are put on one line, they must be separated by colons : . Statements may be
empty. Each statement has its own idiosyncratic syntax.

Many reference works on GW-BASIC distinguish commands and statements; this distinction
stems from the original Dartmouth design of the BASIC language, in which commands were
not part of the language and could not be used in programs, but were rather used to control
the interpreter itself. However, in GW-BASIC this distinction is less useful and therefore this
reference includes what is traditionally thought of as commands in the category of
statements.

AUTO
AUTO [line_number|.] [, [increment]]

Start automatic line numbering. Line numbers are automatically generated when Enter is
pressed. If a program line exists at a generated line number, a * is shown after the line
number. To avoid overwriting this line, leave it empty and press Enter . To stop automatic
line numbering, press Ctrl + Break or Ctrl + C . The line being edited at that point is not
saved. Also stops program execution and returns control to the user. Any further statements
on the line will be ignored, also in direct mode.

Parameters
• Line numbering starts at line_number , if specified. If . is specified, line

numbering starts at the last program line that was stored. Otherwise, line
numbering starts at 10 .

• Each next line number is incremented by increment , if specified. If a comma is
used without specifying an increment, the last increment specified in an AUTO
command is used. If not, increment defaults to 10 .

Errors
• line_number is not an unsigned-integer value in [0—65529] : Syntax error .
• When automatic line numbering is enabled and Enter is pressed on an empty line

with number larger than 65519 : Undefined line number .
• increment is 0 : Illegal function call .

140 PC-BASIC

BEEP
BEEP

Beep the speaker at 800Hz for 0.25s.

Errors
• If a Syntax error is raised, the beep is still produced.

BEEP (switch)
BEEP {ON|OFF}

Switches the internal speaker on or off.

Notes
• Only legal with the syntax={pcjr|tandy} option.
• On PC-BASIC, both the internal and the external speaker are emulated through

the same sound system.

BLOAD
BLOAD file_spec [, offset]

Loads a memory image file into memory.

Parameters
• The string expression file_spec is a valid file specification indicating the file to

read the memory image from.
• offset is a numeric expression in the range [-32768—65535] . It indicates an

offset in the current DEF SEG segment where the file is to be stored. If not
specified, the offset stored in the BSAVE file will be used. If negative, its two's
complement will be used.

Errors
• The loaded file is not in BSAVE format: Bad file mode .
• file_spec contains disallowed characters: Bad file number (on CAS1:); Bad

file name (on disk devices).
• file_spec has a numeric value: Type mismatch .
• offset is not in the range [-32768—65535] : Overflow .

Statements

Language reference 141

/home/rob/Projects/basic-project/www/pcbasic/doc/2.0/syntax

BSAVE
BSAVE file_spec, offset, length

Saves a region of memory to an image file.

Parameters
• The string expression file_spec is a valid file specification indicating the file to

write to.
• offset is a numeric expression in the range [-32768—65535] indicating the

offset into the current DEF SEG segment from where to start reading.
• length is a numeric expression in the range [-32768—65535] indicating the

number of bytes to read.
• If offset or length are negative, their two's complement will be used.

Errors
• file_spec has a numeric value: Type mismatch .
• file_spec contains disallowed characters: Bad file number (on CAS1:); Bad

file name (on disk devices).
• offset is not in the range [-32768—65535] : Overflow .
• length is not in the range [-32768—65535] : Overflow .

CALL and CALLS
{CALL|CALLS} address_var [(p0 [, p1] ...)]

Does nothing.

Notes
• In GW-BASIC, CALL or CALLS executes a machine language subroutine.
• This statement is not implemented in PC-BASIC.

Parameters
• address_var is a numeric variable name.
• p0, p1, ... are variable names or array elements.

Errors
• address_var is a string variable: Type mismatch .
• address_var is a literal or expression: Syntax error .

142 PC-BASIC

CHAIN
CHAIN [MERGE] file_spec [, [line_number_expr] [, ALL] [, DELETE range [, ign]]]

Loads a program from file into memory and runs it, optionally transferring variables.

• If ALL is specified, all variables are transferred. If not, the variables specified in a
COMMON statement are transferred.

• If MERGE is specified, the loaded program is merged into the existing program. To
be able to use this, the program file indicated by file_spec must be in plain text
format.

• If DELETE is specified, the range of line numbers is deleted from the existing
code before the merge. This is pointless without MERGE .

Parameters
• The string expression file_spec is a valid file specification indicating the file to

read the program from.
• line_number_expr is a numeric expression. It will be interpreted as a line number

in the new program and execution will start from this line number. If
line_number_expr is negative, it will be interpreted as its two's-complement.

• range is a line number range of which the closing line number is specified and
exists before the merge.

• ign is optional and ignored.

Notes
• CHAIN preserves the OPTION BASE setting.
• Only if ALL is specified, DEF FN definitions are preserved.
• Only if MERGE is specified, DEFINT , DEFSTR , DEFSNG , DEFDBL definitions are

preserved.
• If specified, ALL must precede DELETE ; if unspecified, no comma must be put in

its place and only two commas should precede DELETE .

Errors
• file_spec has a numeric value: Type mismatch .
• file_spec contains disallowed characters: Bad file number (on CAS1:); Bad

file name (on disk devices).
• The file specified in file_spec cannot be found: File not found .
• MERGE is specified and the loaded program was not saved in plain-text mode: Bad

file mode .
• A line number in range is greater than 65529: Syntax error .

Statements

Language reference 143

/home/rob/Projects/basic-project/www/pcbasic/doc/2.0/DEF-FN

• If a Syntax error is raised by CHAIN , no lines are deleted and the new program
is not loaded.

• The closing line number in range does not exist: Illegal function call
• If line_number_expr does not evaluate to an existing line number in the new

program, Illegal function call is raised but the load or merge is being
performed.

• A loaded text file contains lines without line numbers: Direct statement in file .
• A loaded text file contains lines longer than 255 characters: Line buffer

overflow . Attempting to load a text file that has LF rather than CR LF line
endings may cause this error.

CHDIR
CHDIR dir_spec

Change the current directory on a disk device to dir_spec . Each disk device has its own
current directory.

Parameters
• The string expression dir_spec is a valid file specification indicating an existing

directory on a disk device.

Errors
• No matching path is found: Path not found .
• dir_spec has a numeric value: Type mismatch .
• dir_spec is empty: Bad file name .

144 PC-BASIC

CIRCLE
CIRCLE [STEP] (x, y), radius [, [colour] [, [start] [, [end] [, aspect]]]

Draw an ellipse or ellipse sector.

Parameters
• The midpoint of the ellipse is at (x , y) . If STEP is specified, the midpoint is

(x , y) away from the current position.
• radius is the radius, in pixels, along the long axis.
• colour is the colour attribute.
• If start and end are specified, a sector of the ellipse is drawn from start

radians to end radians, with zero radians the intersection with the right-hand x
axis. If a negative value is specified, the arc sector is connected by a line to the
midpoint.

• aspect specifies the ratio between the y radius and the x radius. If it is not
specified, the standard value for the SCREEN mode is used (see there), so as to
make the ellipse appear like a circle on the original hardware.

Notes
• For aspect <> 1 , the midpoint algorithm used does not pixel-perfectly reproduce

GW-BASIC's ellipses.

Errors
• The statement is executed in text mode: Illegal function call .
• start or end is not in [0—2π] : Illegal function call .
• The statement ends with a comma: Missing operand .

Statements

Language reference 145

CLEAR
CLEAR [expr] [, [mem_limit] [, [stack_size] [, video_memory]]]

Clears all variables, arrays, DEF FN user functions and DEFtype type definitions. Closes all
files. Turns off all sound. Resets PLAY state and sets music to foreground. Clears all ON
ERROR traps. Resets ERR and ERL to zero. Disables all events. Turns PEN and STRIG off.
Resets the random number generator. Clears the loop stack. Resets the DRAW state and the
current graphics position.

Parameters
• mem_limit specifies the upper limit of usable memory. Default is previous

memory size. Default memory size is 65534.
• stack_size specifies the amount of memory available to the BASIC stack.

Default is previous stack size. Default stack size is 512.
• video_memory specifies the amount of memory available to the video adapter.

This parameter is only legal with one of the options syntax={pcjr, tandy} .
Instead of using CLEAR , the option video-memory can also be used to set video
memory size.

Notes
• The purpose of expr is unknown.
• If called inside a FOR — NEXT or WHILE — WEND loop, an error will be raised at

the NEXT or WEND statement, since the loop stacks have been cleared.

Errors
• Any of the arguments has a string value: Type mismatch .
• mem_limit , stack_size are not in [-32768—65535] : Overflow .
• mem_limit or stack_size equal 0 : Illegal function call .
• mem_limit equals -1 or 65535 : Out of memory .
• mem_limit or expr are too low: Out of memory .
• expr is not in [-32768—32767] : Overflow .
• expr is negative: Illegal function call .

146 PC-BASIC

CLOSE
CLOSE [[#] file_0 [, [#] file_1] ...]

Closes files. If no file numbers are specified, all open files are closed. The hash (#) is
optional and has no effect.

Parameters
• file_1, file_2, ... are numeric expressions yielding file numbers.

Notes
• No error is raised if the specified file numbers were not open.

Errors
• file_1, file_2, ... are not in [-32768—32767] : Overflow .
• file_1, file_2, ... are not in [0—255] : Illegal function call .
• file_1, file_2, ... have a string value: Type mismatch .
• The statement ends in a comma, Missing operand .
• If an error occurs, only the files before the erratic value are closed.

Statements

Language reference 147

CLS
CLS [x][,]

Clears the screen or part of it. If x is not specified, in SCREEN 0 the text view region is
cleared; in other screens, the graphics view region is cleared. The comma is optional and
has no effect.

Parameters
x is a numeric valued expression.

• If x = 0 , the whole screen is cleared.
• If x = 1 , the graphics view region is cleared.
• If x = 2 , the text view region is cleared.

The optional argument x is not available with syntax={pcjr|tandy} .

Errors
• x is has a string value: Type mismatch .
• x is not in [-32768—32767] : Overflow .
• x is not in [0, 1, 2] : Illegal function call .
• No comma is specified but more text follows: Illegal function call .
• A comma is specified followed by more: Syntax error .
• syntax=pcjr is set and an argument is specified: Syntax error .
• syntax=tandy is set and an argument is specified: Illegal function call .
• If an error occurs, the screen is not cleared.

148 PC-BASIC

COLOR (text mode)
COLOR [foreground] [, [background] [, border]]

Changes the current foreground and background attributes. All new characters printed will
take the newly set attributes. Existing characters on the screen are not affected.

Parameters
• foreground is a numeric expression in [0—31] . This specifies the new

foreground attribute. Attributes 16—31 are blinking versions of attributes 0—15 .
• background is a numeric expression in [0—15] . This specifies the new

background attribute. It is taken MOD 8 : Values 8—15 produce the same colour
as 0—7 .

• border is a numeric expression in [0—15] specifying the border attribute.

Statements

Language reference 149

Textmode attributes (colour)

Background attribute
0 1 2 3 4 5 6 7

FG 0 00 XX 10 XX 20 XX 30 XX 40 XX 50 XX 60 XX 70 XX
1 01 XX 11 XX 21 XX 31 XX 41 XX 51 XX 61 XX 71 XX
2 02 XX 12 XX 22 XX 32 XX 42 XX 52 XX 62 XX 72 XX
3 03 XX 13 XX 23 XX 33 XX 43 XX 53 XX 63 XX 73 XX
4 04 XX 14 XX 24 XX 34 XX 44 XX 54 XX 64 XX 74 XX
5 05 XX 15 XX 25 XX 35 XX 45 XX 55 XX 65 XX 75 XX
6 06 XX 16 XX 26 XX 36 XX 46 XX 56 XX 66 XX 76 XX
7 07 XX 17 XX 27 XX 37 XX 47 XX 57 XX 67 XX 77 XX
8 08 XX 18 XX 28 XX 38 XX 48 XX 58 XX 68 XX 78 XX
9 09 XX 19 XX 29 XX 39 XX 49 XX 59 XX 69 XX 79 XX
10 0a XX 1a XX 2a XX 3a XX 4a XX 5a XX 6a XX 7a XX
11 0b XX 1b XX 2b XX 3b XX 4b XX 5b XX 6b XX 7b XX
12 0c XX 1c XX 2c XX 3c XX 4c XX 5c XX 6c XX 7c XX
13 0d XX 1d XX 2d XX 3d XX 4d XX 5d XX 6d XX 7d XX
14 0e XX 1e XX 2e XX 3e XX 4e XX 5e XX 6e XX 7e XX
15 0f XX 1f XX 2f XX 3f XX 4f XX 5f XX 6f XX 7f XX
16 80 XX 90 XX a0 XX b0 XX c0 XX d0 XX e0 XX f0 XX
17 81 XX 91 XX a1 XX b1 XX c1 XX d1 XX e1 XX f1 XX
18 82 XX 92 XX a2 XX b2 XX c2 XX d2 XX e2 XX f2 XX
19 83 XX 93 XX a3 XX b3 XX c3 XX d3 XX e3 XX f3 XX
20 84 XX 94 XX a4 XX b4 XX c4 XX d4 XX e4 XX f4 XX
21 85 XX 95 XX a5 XX b5 XX c5 XX d5 XX e5 XX f5 XX
22 86 XX 96 XX a6 XX b6 XX c6 XX d6 XX e6 XX f6 XX
23 87 XX 97 XX a7 XX b7 XX c7 XX d7 XX e7 XX f7 XX
24 88 XX 98 XX a8 XX b8 XX c8 XX d8 XX e8 XX f8 XX
25 89 XX 99 XX a9 XX b9 XX c9 XX d9 XX e9 XX f9 XX
26 8a XX 9a XX aa XX ba XX ca XX da XX ea XX fa XX
27 8b XX 9b XX ab XX bb XX cb XX db XX eb XX fb XX
28 8c XX 9c XX ac XX bc XX cc XX dc XX ec XX fc XX
29 8d XX 9d XX ad XX bd XX cd XX dd XX ed XX fd XX
30 8e XX 9e XX ae XX be XX ce XX de XX ee XX fe XX
31 8f XX 9f XX af XX bf XX cf XX df XX ef XX ff XX

150 PC-BASIC

Textmode attributes (monochrome)

Background attribute
0 1 2 3 4 5 6 7

FG 0 00 XX 10 XX 20 XX 30 XX 40 XX 50 XX 60 XX 70 XX
1 01 XX 11 XX 21 XX 31 XX 41 XX 51 XX 61 XX 71 XX
2 02 XX 12 XX 22 XX 32 XX 42 XX 52 XX 62 XX 72 XX
3 03 XX 13 XX 23 XX 33 XX 43 XX 53 XX 63 XX 73 XX
4 04 XX 14 XX 24 XX 34 XX 44 XX 54 XX 64 XX 74 XX
5 05 XX 15 XX 25 XX 35 XX 45 XX 55 XX 65 XX 75 XX
6 06 XX 16 XX 26 XX 36 XX 46 XX 56 XX 66 XX 76 XX
7 07 XX 17 XX 27 XX 37 XX 47 XX 57 XX 67 XX 77 XX
8 08 XX 18 XX 28 XX 38 XX 48 XX 58 XX 68 XX 78 XX
9 09 XX 19 XX 29 XX 39 XX 49 XX 59 XX 69 XX 79 XX
10 0a XX 1a XX 2a XX 3a XX 4a XX 5a XX 6a XX 7a XX
11 0b XX 1b XX 2b XX 3b XX 4b XX 5b XX 6b XX 7b XX
12 0c XX 1c XX 2c XX 3c XX 4c XX 5c XX 6c XX 7c XX
13 0d XX 1d XX 2d XX 3d XX 4d XX 5d XX 6d XX 7d XX
14 0e XX 1e XX 2e XX 3e XX 4e XX 5e XX 6e XX 7e XX
15 0f XX 1f XX 2f XX 3f XX 4f XX 5f XX 6f XX 7f XX
16 80 XX 90 XX a0 XX b0 XX c0 XX d0 XX e0 XX f0 XX
17 81 XX 91 XX a1 XX b1 XX c1 XX d1 XX e1 XX f1 XX
18 82 XX 92 XX a2 XX b2 XX c2 XX d2 XX e2 XX f2 XX
19 83 XX 93 XX a3 XX b3 XX c3 XX d3 XX e3 XX f3 XX
20 84 XX 94 XX a4 XX b4 XX c4 XX d4 XX e4 XX f4 XX
21 85 XX 95 XX a5 XX b5 XX c5 XX d5 XX e5 XX f5 XX
22 86 XX 96 XX a6 XX b6 XX c6 XX d6 XX e6 XX f6 XX
23 87 XX 97 XX a7 XX b7 XX c7 XX d7 XX e7 XX f7 XX
24 88 XX 98 XX a8 XX b8 XX c8 XX d8 XX e8 XX f8 XX
25 89 XX 99 XX a9 XX b9 XX c9 XX d9 XX e9 XX f9 XX
26 8a XX 9a XX aa XX ba XX ca XX da XX ea XX fa XX
27 8b XX 9b XX ab XX bb XX cb XX db XX eb XX fb XX
28 8c XX 9c XX ac XX bc XX cc XX dc XX ec XX fc XX
29 8d XX 9d XX ad XX bd XX cd XX dd XX ed XX fd XX
30 8e XX 9e XX ae XX be XX ce XX de XX ee XX fe XX
31 8f XX 9f XX af XX bf XX cf XX df XX ef XX ff XX

Statements

Language reference 151

Notes
• The syntax and effect of COLOR is different in different SCREEN modes: COLOR (text

mode), COLOR (SCREEN 1), (SCREEN 3—9).
• At least one parameter must be provided and the statement must not end in a

comma.

Errors
• Any of the parameters has a string value: Type mismatch .
• Any of the parameters is not in [-32768—32767] : Overflow .
• foreground is not in [0—31] , background is not in [0—15] or border is not in

[0—15] : Illegal function call .
• Statement is used in SCREEN 2 : Illegal function call .

152 PC-BASIC

COLOR (SCREEN 1)
COLOR [palette_0] [, palette [, override]]

Assigns new colours to the palette of attributes.

• palette_0 is a numeric expression in [0—255] . This sets the palette colour
associated with attribute 0; by default, the background has this attribute. All pixels
with this attribute will change colour. The palette colour value is taken from the
64-colour set. palette_0 is taken MOD 64 .

• palette is a numeric expression in [0—255] that specifies the palette:
◦ palette odd sets the standard CGA palette (cyan, magenta, grey).
◦ palette even sets the alternative palette (green, red, brown).

All pixels with attributes 1,2,3 will change colour to the new palette.
• override is a numeric expression in [0—255] . If override is specified, palette

is set as above but using override instead of palette . palette is then
ignored.

CGA palettes

Attribute Palette 0 Palette 1 Alternate palette
Colour Lo Hi Colour Lo Hi Colour Lo Hi

0 Black Black Black
1 Green Cyan Cyan
2 Red Magenta Red
3 Brown White White

Notes
• The syntax and effect of COLOR is different in different SCREEN modes: COLOR (text

mode), COLOR (SCREEN 1), (SCREEN 3—9).
• At least one parameter must be provided and the statement must not end in a

comma.

Errors
• Any of the parameters has a string value: Type mismatch .
• Any of the parameters is not in [-32768—32767] : Overflow .
• Any of the parameters is not in [0—255] : Illegal function call .

Statements

Language reference 153

COLOR (SCREEN 3—9)
COLOR [foreground] [, palette_0 [, dummy]]

Changes the current foreground attribute and the colour for attribute 0.

Parameters
• foreground is a numeric expression in [1—15] This sets the new foreground

attribute. This applies only to new characters printed or pixels plotted.
• palette_0 is a numeric expression in [0—15] This sets the colour associated

with attribute 0; by default, the background has this attribute. All pixels with this
attribute will change colour. In SCREEN 7 and 8 , the palette_0 colour is taken
from the first 8 of the 16-colour EGA set. palette_0 is taken MOD 8 . IN SCREEN
9 , the colour value is taken from the 64-colour set.

• dummy is a numeric expression with a value in [0—255] The value of dummy is
ignored.

EGA default palette

Attribute Colour
0 Black
1 Blue
2 Green
3 Cyan
4 Red
5 Magenta
6 Brown
7 Low-intensity white
8 Grey
9 Light Blue
10 Light Green
11 Light Cyan
12 Light Red
13 Light Magenta
14 Light Yellow
15 High-intensity white

154 PC-BASIC

EGA colour list

0 8 16 24 32 40 48 56
1 9 17 25 33 41 49 57
2 10 18 26 34 42 50 58
3 11 19 27 35 43 51 59
4 12 20 28 36 44 52 60
5 13 21 29 37 45 53 61
6 14 22 30 38 46 54 62
7 15 23 31 39 47 55 63

Notes
• The syntax and effect of COLOR is different in different SCREEN modes: COLOR (text

mode), COLOR (SCREEN 1), (SCREEN 3—9).
• At least one parameter must be provided and the statement must not end in a

comma.

Errors
• Any of the parameters has a string value: Type mismatch .
• Any of the parameters is not in [-32768—32767] : Overflow .
• foreground is not in [1—15] ; background is not in [0—15] ; or dummy is not in

[0—255] : Illegal function call .

Statements

Language reference 155

COM
COM(port) {ON|OFF|STOP}

• ON : enables ON COM(port) event trapping of the emulated serial port.
• OFF : disables trapping.
• STOP : halts trapping until COM(port) ON is used. Events that occur while trapping

is halted will trigger immediately when trapping is re-enabled.

Parameters
• port is a numeric expression with a value of 1 or 2 . This specifies which

serial port (COM1: or COM2:) is trapped. If port equals 0 , this statement does
nothing.

Errors
• port a string value: Type mismatch .
• port is not in [-32768—32767] : Overflow .
• port is not in [0—3] : Illegal function call .

156 PC-BASIC

COMMON
COMMON [var_0 [([index_0])] [, [var_1 [([index_1])]]] ...]

Specifies variables to be passed as common variables to the program called with CHAIN .

Parameters
• var_0, var_1, ... are names of scalar or array variables.
• index_0, index_1, ... are optional number literals; they are ignored.

Notes
• Array elements with square brackets and an index do not cause an error, but are

ignored.
• COMMON statements are not executed during run time; rather, when a CHAIN

command is encountered where ALL is not specified, all COMMON declarations in
the program are parsed. As a consequence, the DEFSTR , DEFINT , DEFSNG or
DEFDBL settings used are those that are active at the time of execution of the
CHAIN statement.

• COMMON declarations need not be reachable in the program flow in order to be
used. They may occur anywhere before or after the CHAIN statement that uses
them.

• Variables may be repeated or occur in multiple COMMON declarations.
• If the COMMON keyword is not the first element of the statement, the declaration will

be ignored. In particular, any COMMON declaration that occurs directly after a THEN
or ELSE keyword will not be used. COMMON in the second or later statements of a
compound statement after THEN or ELSE will be used regardless of the value of
the IF condition.

Statements

Language reference 157

CONT
CONT [anything]

Resumes execution of a program that has been halted by STOP , END , Ctrl + C , or
Ctrl + Break . If run from a program, stops program execution and returns control to the

user. Any further statements on the line will be ignored, also in direct mode.

Notes
• Anything after the CONT keyword is ignored.
• This statement can only be used in direct mode.
• If a break is encountered in GOSUB routine called from a continuing direct line (e.g.

GOSUB 100:PRINT A$), CONT will overwrite the running direct line. As the
subroutine RETURN s to the position after the GOSUB in the old direct line, strange
things may happen if commands are given after CONT . In GW-BASIC, this can
lead to strange errors in non-existing program lines as the parser executes bytes
that are not part of a program line. In PC-BASIC, if the new direct line is shorter,
execution stops after RETURN ; but if the direct line is extended beyond the old
return position, the parser tries to resume at that return position, with strange
effects.

Errors
• No program is loaded, a program has not been run, after a program line has been

modified or after CLEAR : Can't continue .
• The break occurred in a direct line: Can't continue .
• CONT is used in a program: Can't continue .

158 PC-BASIC

DATA
DATA [const_0] [, [const_1]] ...

Specifies data that can be read by a READ statement.

Parameters
• const_0, const_1, ... are string and number literals or may be empty. String

literals can be given with or without quotation marks. If quotation marks are
omitted, leading and trailing whitespace is ignored and commas or colons will
terminate the data statement.

Notes
• DATA declarations need not be reachable in the program flow in order to be used.

They may occur anywhere before or after the READ statement that uses them.
• If the DATA keyword is not the first element of the statement, the declaration will

be ignored. In particular, any DATA declaration that occurs directly after a THEN
or ELSE keyword will not be used. DATA in the second or later statements of a
compound statement after THEN or ELSE will be used regardless of the value of
the IF condition.

Errors
• If the type of the literal does not match that of the corresponding READ statement,

a Syntax error occurs on the DATA statement.

Statements

Language reference 159

DATE$ (statement)
DATE$ = date

Sets the system date. date is a string expression that represents a date in one of the
formats: "mm{-|/}dd{-|/}yy" or "mm{-|/}dd{-|/}yyyy"

Of these,

• mm may be one or two characters long and must be in [1—12] .
• dd may be one or two characters long and must be in [1—31] .
• yyyy must be in [1980—2099] .
• yy may be one or two characters long and must be in one of the ranges:

◦ [0—77] , interpreted as 2000—2077 ; or
◦ [80—99] , interpreted as 1980—1999 .

Notes
• The system date is not actually changed; rather, PC-BASIC remembers the offset

from the true system date. This avoids requiring user permission to change the
system time.

• GW-BASIC appears to accept invalid dates such as "02-31-2000" . PC-BASIC
raises Illegal function call for these.

Errors
• date has a numeric value: Type mismatch .
• date is not in the format specified above: Illegal function call .

160 PC-BASIC

DEF FN
DEF FN[]name [(arg_0 [, arg_1] ...)] = expression

Defines a function called FNname (or FN name : spaces between FN and name are
optional). On calling FNname(...) , expression is evaluated with the supplied parameters
substituted. Any variable names used in the function that are not in the argument list refer to
the corresponding global variables. The result of the evaluation is the return value of
FNname . The type of the return value must be compatible with the type indicated by name .

Notes
• This statement may only be used on a program line.
• As the function must be a single expression and PC-BASIC does not have a

ternary operator, there is no way to define a recursive function that actually
terminates.

Parameters
• name must be a legal variable name.
• arg_0, arg_1, ... must be legal variable names. These are the parameters of

the function. Variables of the same name may or may not exist in the program;
their value is not affected or used by the defined function.

• expression must be a legal PC-BASIC expression.

Errors
• The statement is executed directly instead of in a program line: Illegal direct .
• If the type of the return value is incompatible with the type of name , no error is

raised at the DEF FN statement; however, a Type mismatch will be raised at the
first call of FNname .

Statements

Language reference 161

DEFINT, DEFDBL, DEFSNG, DEFSTR
{DEFINT|DEFDBL|DEFSNG|DEFSTR} first_0[- last_0] [, first_1[- last_1]] ...

Sets the type that is assumed if no sigil is specified when a variable name is used. The
statement sets the default type for variables starting with a letter from the ranges specified.

The default type is set to:

DEFINT integer (%)
DEFDBL double (#)
DEFSNG single (!)
DEFSTR string ($)

Parameters
• first_0, last_0, ... are letters of the alphabet. Pairs of letters connected by a

dash - indicate inclusive ranges.

Notes
• DEFSNG A-Z is the default setting.

DEF SEG
DEF SEG [= address]

Sets the memory segment to be used by BLOAD , BSAVE , CALL , PEEK , POKE , and USR .

Parameters
• address is a numeric expression in [-32768—65535] .

Notes
• If address is negative, it is interpreted as its two's complement.
• If address is not specified, the segment is set to the GW-BASIC data segment.

Errors
• address has a string value: Type mismatch .
• address is not in [-32768—65535] : Overflow .

162 PC-BASIC

DEF USR
DEF USR[n] = address

Does nothing.

Parameters
• n is a digit between 0 and 9 inclusive.
• address is a numeric expression in [-32768—65535] .

Notes
• In GW-BASIC, this statement sets the starting address of an assembly-language

function.
• This statement is not implemented in PC-BASIC.
• If address is negative, it is interpreted as its two's complement.

Errors
• n is not a digit in [0—9] : Syntax error .
• address has a string value: Type mismatch .
• address is not in [-32768—65535] : Overflow .

DELETE
DELETE [line_number_0|.] [-[line_number_1|.]]

Deletes a range of lines from the program. Also stops program execution and returns control
to the user. Any further statements on the line will be ignored, also in direct mode.

Parameters
• line_number_0 and line_number_1 are line numbers in the range [0—65529] ,

specifying the inclusive range of line numbers to delete.
• A . indicates the last line edited.
• If the start point is omitted, the range will start at the start of the program.
• If the end point is omitted, the range will end at the end of the program.
• If no range is specified, the whole program will be deleted.

Errors
• line_number_0 or line_number_1 is greater than 65529 : Syntax error .
• The range specified does not include any program lines stored: Illegal function

call .

Statements

Language reference 163

DIM
DIM name [{(|[} limit_0 [, limit_1] ... {)|]}] [, ...]

Allocates memory for one or more arrays. The DIM statement also fixes the number of
indices of the array. An array can only be allocated once; to re-allocate an array, ERASE or
CLEAR must be executed first. If an array is first used without a DIM statement, it is

automatically allocated with its maximum indices set at 10 for each index position used. A
DIM entry with no brackets and no indices performs no operation. Empty brackets are not

allowed. The least index allowed is determined by OPTION BASE .

Parameters
• name, ... are legal variable names specifying the arrays to be allocated.
• limit_0, limit_1, ... are numeric expressions that specify the greatest index

allowed at that position.

Notes
• Mixed brackets are allowed.
• The size of arrays is limited by the available BASIC memory.
• The maximum number of indices is, theoretically, 255 . In practice, it is limited by

the 255-byte limit on the length of program lines.

Errors
• name has already been dimensioned: Duplicate definition .
• An index is empty: Syntax error .
• An index is missing at the end: Missing operand .
• limit_0, limit_1, ... have a string value: Type mismatch .
• limit_0, limit_1, ... are not within [-32768—32767] : Overflow .
• limit_0, limit_1, ... are negative: Illegal function call .
• The array exceeds the size of available variable space: Out of memory .

164 PC-BASIC

DRAW
DRAW gml_string

Draws the shape specified by gml_string , a string expression in Graphics Macro Language
(GML).

Graphics Macro Language reference
Movement commands

[B][N] movement

where the default is to move and draw; the optional prefixes mean:

B move but do not plot
N return to original point after move

and movement is one of:

U[n] up n steps
L[n] left n steps
D[n] down n steps
R[n] right n steps
E[n] up and right n steps
F[n] down and right n steps
G[n] down and left n steps
H[n] up and left n steps
M{+|-}x,[+|-]y move (x,y) steps
Mx,y move to view region coordinate (x,y)

where n is an integer in [-32768—32767] and x , y are integers in [0—9999] .
Where optional, n defaults to 1 .

Scale commands

Sn set the step size to n/4. The default step size is 1 pixel. n is an integer in
[1—255]

TAn set the angle to n degrees. The default angle is 0 degrees. n is an integer in
[-360—360]

An set the angle to 0 for n=0, 90 for n=1, 180 for n=2, 270 for n=3. n is an integer in
[0—3]

Statements

Language reference 165

Colour commands

Cn set the foreground attribute to n, where n is an integer in [-32768—32767] See
COLOR.

Pn,b flood fill with attribute n and boundary attribute b, where n, b are integers in
[0—9999] See PAINT.

Subroutine command

Xs execute a substring

s is one of the following:

• a string variable name followed by semicolon (;)
• the result of VARPTR$() on a string variable

Numeric variables n , x , y , b in the commands above can be:

• an integer literal, e.g. DRAW "U100"
• a numeric variable name or array element var preceded by = and followed by

; . For example, DRAW "U=VAR;" or DRAW "U=A(1);"
• the result of VARPTR$(var) preceded by = . For example, DRAW "U=" +

VARPTR$(VAR)

Notes
• The CLS statement resets the step size to 1 pixel, angle to 0 degrees and

position to the centre of the view region.
• The value n in the TA , A and C command can be left out but only if the

command is terminated by a semicolon. n defaults to 0 .
• In GW-BASIC, the numeric arguments of U , L , D , R , E , F , G , H , and C

can be in the range [-99999—99999] ; however, results for large numbers are
unpredictable. This is not implemented in PC-BASIC.

Errors
• gml_string has a numeric value: Type mismatch .
• gml_string has errors in the GML: Illegal function call .
• A variable referenced in the GML string is of incorrect type: Type mismatch .

166 PC-BASIC

EDIT
EDIT {line_number|.}

Displays the specified program line with the cursor positioned for editing. line_number must
be a line that exists in the program, or a period (.) to indicate the last line stored. Also stops
program execution and returns control to the user. Any further statements on the line will be
ignored, also in direct mode.

Errors
• No line_number is specified: Undefined line number .
• More characters are written after the line number: Illegal function call .
• line_number is not in [0—65529] : Illegal function call .
• The specified line number does not exist: Undefined line number .

ELSE
ELSE [anything]

Unless part of an IF statement on the same line, anything after ELSE is ignored in the
same way as after ' or :REM . No colon : preceding the ELSE statement is necessary.
See IF for normal usage.

END
END

Closes all files, stops program execution and returns control to the user. No message is
printed. It is possible to resume execution at the next statement using CONT .

Statements

Language reference 167

ENVIRON
ENVIRON command_string

Sets a shell environment variable.

Parameters
command_string is a string expression of one of the following forms:

"VARIABLE=VALUE"
to set VARIABLE to VALUE ;

"VARIABLE="
to unset VARIABLE .

VARIABLE must be an ASCII string and will be converted to uppercase on case-sensitive
systems.

Errors
• command_string has a numeric value: Type mismatch .
• command_string is not of the required form: Illegal function call .
• VARIABLE contains characters outside of ASCII: Illegal function call .

ERASE
ERASE array_0 [, array_1] ...

De-allocates arrays. The data stored in the arrays is lost.

Parameters
• array_0, array_1 ... are names of existing arrays. The names must be

specified without brackets.

Errors
• No array names are given: Syntax error .
• array_0, array_1 ... do not exist: Illegal function call .
• If an error occurs, the arrays named before the error occurred are erased.

168 PC-BASIC

ERROR
ERROR error_number

Raises the error with number error_number . See the list of error numbers and messages.

Parameters
• error_number is an expression with a numeric value.

Errors
• error_number has a string value: Type mismatch .
• error_number is not in [-32768—32767] : Overflow .
• error_number is not in [1—255] : Illegal function call .

Statements

Language reference 169

FIELD
FIELD [#] file_number [, width_0 AS name_0 [, width_1 AS name_1] ...]

Assigns variables to the random-access record buffer. The record buffer is a region of
memory of length defined by the OPEN statement; the default record length is 128 bytes. The
FIELD statement assigns a portion of this region to one or more fixed-length string

variables, so that the value of these strings is whatever happens to be in the record buffer at
that location.

Notes
• A FIELD statement without any variables specified has no effect.
• Another FIELD statement on the same file will specify an alternative mapping of

the same file buffer; all mappings will be in effect simultaneously.
• A subsequent assignment or LET or MID$ statement on name_0 , name_1 ...

will dis- associate the string variable from the field buffer.
• Use LSET , RSET or MID$ to copy values into a FIELD buffer.
• Use GET to read values from the file into the field buffer, changing the variables.
• Use PUT to write the field buffer to the file.

Parameters
• file_number is a numeric expression that yields the number of an open random-

access file. The # is optional and has no effect.
• width_0, width_1, ... are numeric expressions giving the length of the string

variables
• name_0 , name_1 ... are string variables.

Errors
• file_number is not in [0—255] : Illegal function call .
• file_number is not the number of an open file: Bad file number .
• file_number is open under a mode other than RANDOM : Bad file mode .
• The statement ends in a comma: Missing operand .
• No file number is specified: Missing operand .
• The lengths in a FIELD statement add up to a number larger than the record

length of the field buffer: Field overflow .
• name_0 , name_1 ... specify a non-string variable: Type mismatch .

170 PC-BASIC

FILES
FILES [filter_spec]

Displays the files fitting the specified filter in the specified directory on a disk device. If
filter_spec is not specified, displays all files in the current working directory.

Parameters
• filter_spec is a string expression that is much like a file specification, but

optionally allows the file name part to contain wildcards.

Notes
• The filename filter may contain the following wildcards:

? Matches any legal file name character.
* Matches any series of legal file name characters.

• The filter will only match MS-DOS style filenames.
• Matched character series do not stretch across directory separators \ or

extension separators . . To match all files with all extensions, use *.* .
• Alternatively, if all files in a specified directory are required, end the directory name

with a backslash \ .

Errors
• filter_spec has a numeric value: Type mismatch .
• filter_spec is the empty string: Bad file name .
• The specified filter does not match any files: File not found .

Statements

Language reference 171

FOR
FOR loop_var = start TO stop [STEP step]

Initiates a FOR—NEXT loop.

Initially, loop_var is set to start . Then, the statements between the FOR statement and
the NEXT statement are executed and loop_var is incremented by step (if step is not
specified, by 1). This is repeated until loop_var has become greater than stop . Execution
then continues at the statement following NEXT . The value of loop_var equals stop+step
after the loop.

start , stop and step are evaluated only once and the resulting values are used
throughout the loop.

Parameters
• loop_var is an integer or single-precision variable.
• start , stop and step are numeric expressions.

Errors
• No NEXT statement is found to match the FOR statement: FOR without NEXT

occurs at the FOR statement.
• loop_var is a string variable or start , stop , or end has a string value: Type

mismatch .
• loop_var is a double-precision variable: Type mismatch .
• loop_var is an array element: Syntax error .
• loop_var is an integer variable and a start , stop or step is outside the

range [-32768, 32767] : Overflow .

172 PC-BASIC

GET (files)
GET [#] file_number [, record_number]

Read a record from the random-access file file_number at position record_number . The
record can be accessed through the FIELD variables or through INPUT$, INPUT or LINE
INPUT .

Parameters
• file_number is a numeric expression that yields the number of an open random-

access file. The # is optional and has no effect.
• record_number is a numeric expression in [1—33554432] (2^25), and is

interpreted as the record number.

Notes
• If the record number is beyond the end of the file, the file buffer is filled with null

bytes.
• The record number is stored as single-precision; this precision is not high enough

to distinguish single records near the maximum value of 2^25 .

Errors
• record_number is not in [1—33554432] : Bad record number .
• file_number is not in [0—255] : Illegal function call .
• file_number is not the number of an open file: Bad file mode .
• file_number is open under a mode other than RANDOM : Bad file mode .
• file_number is not specified: Missing operand .

Statements

Language reference 173

GET (communications)
GET [#] com_file_number [, number_bytes]

Read number_bytes bytes from the communications buffer opened under file number
com_file_number . The record can be accessed through the FIELD variables or through
INPUT$, INPUT or LINE INPUT .

Parameters
• file_number is a numeric expression that yields the number of a file open to a

COM device. The # is optional and has no effect.
• number_bytes is a numeric expression between 1 and the COM buffer length,

inclusive.

Notes
• If bytes is 32768 or greater, GW-BASIC hangs. This functionality is not

implemented in PC-BASIC.
• In GW-BASIC, Device I/O error is raised for overrun error, framing error, and

break interrupt. Device fault is raised if DSR is lost during I/O. Parity error is
raised if parity is enabled and incorrect parity is encountered. This is according to
the manual; it is untested.

Errors
• bytes is less than 1: Bad record number
• bytes is less than 32768 and greater than the COM buffer length: Illegal

function call .
• com_file_number is not specified: Missing operand .
• com_file_number is not in [0—255] : Illegal function call .
• com_file_number is not the number of an open file: Bad file number .
• If the serial input buffer is full, i.e. LOF(com_file_number) = 0 , and

LOC(com_file_number) = 255 : Communication buffer overflow
• If the carrier drops during GET , hangs until the Ctrl + Break key is pressed.

174 PC-BASIC

GET (graphics)
GET (x0, y0) - [STEP] (x1, y1), array_name

Stores a rectangular area of the graphics screen in an array. The area stored is a rectangle
parallel to the screen edges, bounded by the top-left and bottom-right coordinates x0 , y0

and x1 , y1 . If STEP is specified, x1 , y1 is an offset from x0 , y0 . The area is such that
these corner points are inside it.

The image stored in the array can then be put on the screen using PUT. For the purposes of
GET , any array is considered a string of bytes. The byte size of an array can be calculated

as number_elements * byte_size with byte_size equal to 2 for integers (%), 4 for single
(!) and 8 for double (#). Array byte size for string is 3, but string arrays are not allowed in
GET . For calculating the number of elements, keep in mind that OPTION BASE 0 is the

default; in which case an array with maximum index 10 has 11 elements. This works through
in multidimensional arrays.

The array format is as follows:

Byte Contains
0, 1 Number of x pixels, unsigned int. In SCREEN 1, this value is doubled.
2, 3 Number of y pixels, unsigned int.
4— Pixel data. Data is arranged in 2-byte words. The first 16-bit word holds the bit 0 of

the first 16 pixels on the top row. The second word holds the second bit, etc. Data
is word-aligned at the end of each row. Thus, in a screen mode with 4 bits per
pixel, the first row takes at least 8 bytes (4 words), even if it consists of only one
pixel. The number of bits per pixel depends on the SCREEN mode.

Parameters
• array_name is the name of a numeric array dimensioned with enough space to

store the area.
• x0 , y0 , x1 , y1 are numeric expressions.

Notes
• In PCjr/Tandy mode, in SCREEN 6 , GET stores an area of twice the width of the

specified rectangle.

Errors
• The array does not exist: Illegal function call .
• array_name refers to a string array: Type mismatch .
• The area is too large for the array: Illegal function call .

Statements

Language reference 175

• x0 , ... y1 are string expressions: Type mismatch .
• x0 , ... y1 are not in [-32768—32767] : Overflow .
• x0 , ... y1 are outside the current VIEW or WINDOW : Illegal function call

GOSUB
GO[]SUB line_number [anything]

Jumps to a subroutine at line_number . The next RETURN statement jumps back to the
statement after GOSUB . Anything after line_number until the end of the statement is
ignored. If executed from a direct line, GOSUB runs the subroutine and the following RETURN
returns execution to the direct line.

Parameters
• line_number is an existing line number literal.
• Further characters on the line are ignored until end of statement.

Notes
• If no RETURN is encountered, no problem.
• One optional space is allowed between GO and SUB ; it will not be retained in the

program.

Errors
• If line_number does not exist: Undefined line number .
• If line_number is greater than 65529 , only the first 4 characters are read (e.g.

6553)

176 PC-BASIC

GOTO
GO[]TO line_number [anything]

Jumps to line_number . Anything after line_number until the end of the statement is
ignored. If executed from a direct line, GOTO starts execution of the program at the specified
line.

Parameters
• line_number is an existing line number literal.
• Further characters on the line are ignored until end of statement.

Notes
• Any number of optional spaces is allowed between GO and TO , but they will not

be retained in the program.
• If line_number is greater than 65529 , only the first 4 characters are read (e.g.

GOTO 65530 is executed as GOTO 6553)

Errors
• line_number does not exist: Undefined line number .

Statements

Language reference 177

IF
IF truth_value [,] {THEN|GOTO} [compound_statement_true|line_number_true [anything]]

[ELSE [compound_statement_false|line_number_false [anything]]]

If truth_value is non-zero, executes compound_statement_true or jumps to
line_number_true . If it is zero, executes compound_statement_false or jumps to
line_number_false .

Parameters
• truth_value is a numeric expression.
• line_number_false and line_number_true are existing line numbers.
• compound_statement_false and compound_statement_true are compound

statements, consisting of at least one statement, optionally followed by further
statements separated by colons : . The compound statements may contain
nested IF—THEN—ELSE statements.

Notes
• The comma is optional and ignored.
• ELSE clauses are optional; they are bound to the innermost free IF statement if

nested. Additional ELSE clauses that have no matching IF are ignored.
• All clauses must be on the same program line.
• THEN and GOTO are interchangeable; which one is chosen is independent of

whether a statement or a line number is given. GOTO PRINT 1 is fine.
• As in GOTO , anything after the line number is ignored.

Errors
• If truth_value has a string value: Type mismatch .
• truth_value equals 0 and line_number_false is a non-existing line number, or

truth_value is nonzero and line_number_true is a non-existing line number:
Undefined line number .

178 PC-BASIC

INPUT (console)
INPUT [;] [prompt {;|,}] var_0 [, var_1] ...

Prints prompt to the screen and waits for the user to input values for the specified variables.
The semicolon before the prompt, if present, stops a newline from being printed after the
values have been entered. If the prompt is followed by a semicolon, it is printed with a trailing
? . If the prompt is followed by a comma, no question mark is added.

Parameters
• prompt is a string literal.
• var_0, var_1, ... are variable names or fully indexed array elements.

Notes
• Values entered must be separated by commas. Leading and trailing whitespace is

discarded.
• String values can be entered with or without double quotes (").
• If a string with a comma, leading or trailing whitespace is needed, quotes are the

only way to enter it.
• Between a closing quote and the comma at the end of the entry, only white- space

is allowed.
• If quotes are needed in the string itself, the first character must be neither a quote

nor whitespace. It is not possible to enter a string that starts with a quote through
INPUT .

• If a given var_n is a numeric variable, the value entered must be number literal.
• Characters beyond the 255th character of the screen line are discarded.
• If user input is interrupted by Ctrl + Break , CONT will re-execute the INPUT

statement.

Errors
• If the value entered for a numeric variable is not a valid numeric literal, or the

number of values entered does not match the number of variables in the
statement, ?Redo from start is printed and all values must be entered again.

• A Syntax error that is caused after the prompt is printed is only raised after the
value shave been entered. No values are stored.

Statements

Language reference 179

INPUT (files)
INPUT # file_num, var_0 [, var_1] ...

Reads string or numeric variables from a text file or the FIELD buffer of a random access
file.

Parameters
• file_num is the number of a file open in INPUT mode or a random-access file

open in RANDOM mode.
• var_0, var_1, ... are variable names or fully indexed array elements.

Notes
• The # is mandatory. There may or may not be whitespace between INPUT and

.
• String values can be entered with or without double quotes (").
• Numeric values are terminated by , LF , CR , , .
• Unquoted strings are terminated by LF , CR , , .
• Quoted strings are terminated by the closing quote.
• Any entry is terminated by EOF character or its 255th character.
• Leading and trailing whitespace is discarded.
• If the entry cannot be converted to the requested type, a zero value is returned.
• If file_num is open to KYBD: , INPUT# reads from the keyboard until a return or

comma is encountered (as in a file). Arrow keys and delete are passed as their
control characters (not scancodes!) preceded by CHR$(&hFF) .

Errors
• Input is requested after the end of a text file has been reached or an EOF

character has been encountered: Input past end .
• The last character of the field buffer is read: Field overflow .
• file_num has a string value: Type mismatch .
• file_num is greater than 32767 : Overflow .
• file_num is less than zero: Illegal function call .
• file_num is not an open file: Bad file number .
• file_num is not open for INPUT or RANDOM : Bad file mode .
• file_num is open to a COM port and this is the first INPUT , LINE INPUT or

INPUT$ call on that port since the buffer has filled up completely (i.e.
LOF(file_num) has become zero): Communication buffer overflow .

180 PC-BASIC

IOCTL
IOCTL [#] file_num, control_string

Raises Illegal function call .

Notes
• In GW-BASIC, IOCTL sends a control string to a device.
• This statement is not implemented in PC-BASIC.

Errors
• file_num has a string value: Type mismatch .
• file_num is not in [-32768—32767] : Overflow .
• file_num is not an open file: Bad file number .
• Otherwise: Illegal function call

KEY (macro list)
KEY {ON|OFF|LIST}

Turns the list of function-key macros on the bottom of the screen ON or OFF . If LIST is
specified, prints a list of the 10 (or 12 with syntax=tandy) function keys with the function-key
macros defined for those keys to the console.

Most characters are represented by their symbol equivalent in the current codepage.
However, some characters get a different representation, which is a symbolic representation
of their effect as control characters on the screen.

Code point Replacement Usual glyph
&h07 &h0E ♫
&h08 &hFE ■
&h09 &h1A →
&h0A &h1B ←
&h0B &h7F ⌂
&h0C &h16 ▬
&h0D &h1B ←
&h1C &h10 ►
&h1D &h11 ◄
&h1E &h18 ↑
&h1F &h19 ↓

Statements

Language reference 181

KEY (macro definition)
KEY key_id, string_value

Defines the string macro for function key key_id . Only the first 15 characters of
string_value are stored.

Parameters
• key_id is a numeric expression in the range [1—12] (or [1—10] when

syntax=gwbasic).
• string_value is a string expression.

Notes
• If key_id is not in the prescribed range, the statement is interpreted as an event-

trapping KEY statement.
• If string_value is the empty string or the first character of string_value is

CHR$(0) , the function key macro is switched off and subsequent catching of the
associated function key with INKEY$ is enabled.

Errors
• key_id is not in [-32768—32767] : Overflow .
• key_id is not in [1—255] : Illegal function call .
• key_id has a string value: Type mismatch .

182 PC-BASIC

KEY (event switch)
KEY (key_id) {ON|OFF|STOP}

Controls event trapping of the key with identifier key_id . Event trapping is switched ON or
OFF . STOP suspends event trapping until a KEY() ON is executed. Up to one event can be

triggered during suspension, provided that event handling was switched on prior to
suspension. The event triggered during suspension is handled immediately after the next
KEY() ON statement. Event trapping can only be active during execution of a program, it

does not work in direct mode.

Parameters
key_id is a numeric expression in [1—20] . Keys are:

1 F1

2 F2

3 F3

4 F4

5 F5

6 F6

7 F7

8 F8

9 F9

10 F10

11 ↑

12 ←

13 →

14 ↓

Keys 15 to 25 are defined using the event trapping KEY definition statement.

Notes
• With syntax=tandy , key 11 is F11 and key 12 is F12 . Pre-defined keys 11—14

shift to 13—16.

Errors
• key_id is not in [-32768—32767] : Overflow .
• key_id is not in [0—20] : Illegal function call .

Statements

Language reference 183

• key_id has a string value: Type mismatch .

184 PC-BASIC

KEY (event definition)
KEY key_id, two_char_string

Defines the key to trap for key_id .

Parameters
• key_id is a numeric expression in [15—25] (or [15—20] when

syntax=gwbasic , or [17—20] when syntax=tandy).
• two_char_string is a string expression of length 2. The first character is

interpreted as a modifier while the second character is interpreted as a scancode.
The modifier character is a bitwise OR combination of the following flags:

CHR$(&h80) Extended (ignored)
CHR$(&h40) Caps Lock

CHR$(&h20) Num Lock

CHR$(&h10) not used

CHR$(&h08) Alt

CHR$(&h04) Ctrl

CHR$(&h02) Shift (either side)
CHR$(&h01) Shift (either side)

For the unmodified key, the modifier character is CHR$(0) .

Notes
• If key_id is not in the prescribed range, no error is raised; such values are

ignored. In GW-BASIC strange things can happen in this case: screen anomalies
and crashes suggestive of unintended memory access.

• If key_id is in [1—10] (or [1—12] when syntax=tandy), the statement is
interpreted as a function-key macro definition.

• The extended modifier &h80 refers to the additional keys that were introduced
with the Model M 101-key keyboard in th earea between the main keyboard and
the numerical keypad. These are the arrow keys, Home , End , PgUp , PgDn , Ins ,
Del as separate from the numerical keypad. PC-BASIC ignores this modifier; in a

key definition, it does not make a difference whether or not it is set.

Errors
• key_id is not in [-32768—32767] : Overflow .
• key_id is not in [1—255] : Illegal function call .

Statements

Language reference 185

• key_id has a string value: Type mismatch .
• two_char_string is longer than two: Illegal function call .
• two_char_string has a numeric value: Type mismatch .

KILL
KILL filter_spec

Deletes one or more files on a disk device.

Parameters
• The string expression filter_spec is a valid file specification indicating the files

to delete. Wildcards are allowed. See FILES for a description of wildcards.

Notes
• Be very careful with the use of wildcards in this statement: the DOS matching

rules may not be the same as what is usual on your operating system, which could
result in unexpected files being deleted.

• This statement may not delete hidden file and files that do not have short names
which are legal DOS names. However, this behaviour is not guaranteed so you
must not depend on it.

Errors
• filter_spec is a numeric value: Type mismatch .
• A file with a base name equal to that of a file matching filter_spec is open:

File already open
• No file matches filter_spec : File not found
• The user has no write permission: Permission denied
• If a syntax error occurs after the closing quote, the file is removed anyway.

186 PC-BASIC

LCOPY
LCOPY [num]

Does nothing.

Parameters
• num is a numeric expression in [0—255] .

Notes
• This statement does nothing in GW-BASIC. Presumably, it is left over from a

statement in older versions of MS Basic that would copy the screen to the printer.

Errors
• num is not in [-32768—32767] : Overflow .
• num is not in [0—255] : Illegal function call .
• num has a string value: Type mismatch .

LET
[LET] name = expression

Assigns the value of expression to the variable or array element name .

Parameters
• name is a variable that may or may not already exist.
• The type of expression matches that of name : that is, all numeric types can be

assigned to each other but strings can only be assigned to strings.

Errors
• name and expression are not of matching types: Type mismatch .

Statements

Language reference 187

LINE
LINE [[STEP] (x0, y0)] - [STEP] (x1, y1) [, [attr] [, [B [F]] [, pattern]]]

Draws a line or a box in graphics mode. If B is not specified, a line is drawn from (x0, y0)
to (x1, y1) , endpoints inclusive. If B is specified, a rectangle is drawn with sides parallel
to the screen and two opposing corners specified by (x0, y0) and (x1, y1) . If the starting
point is not given, the current graphics position is used as a staring point. If STEP is
specified, (x0, y0) is an offset from the current position and (x1, y1) is an offset from
(x0, y0) . LINE moves the current graphics position to the last given endpoint. If F is

specified with B , the rectangle is filled with the specified attribute. F and B may be
separated by zero or more spaces.

Parameters
• attr is a numeric expression in [0—255] , which specifies the colour attribute of

the line. If it is not given, the current attribute is used.
• pattern is a numeric expression in [-32768—32767] . This is interpreted as a

16-bit binary pattern mask applied to consecutive pixels in the line: a 1 bit
indicates a pixel plotted; a 0 bit indicates a pixel left untouched. The pattern starts
at the most significant bit, which is applied to the topmost endpoint. If a box is
drawn, the pattern is applied in the following counter-intuitive sequence: (x1,
y1)—(x0, y1) , (x1, y0)—(x0, y0) , then (x1, y0)—(x1, y1) , (x0, y0)—(x0,
y1) if y0<y1 and y0 , y1 reversed if y1<y0 . When drawing a filled box, LINE
ignores the pattern.

Notes
• If a coordinate is outside the screen boundary, it is replaced with -1 (if less than 0)

or the screen dimension (if larger than the screen dimension).

Errors
• The statement ends in a comma and it is the first or third: Missing operand . If it is

the second: Syntax error .
• Any of the coordinates is not in [-32768—32767] : Overflow .
• Any of the parameters has a string value: Type mismatch .

188 PC-BASIC

LINE INPUT (console)
LINE INPUT [;] [prompt_literal {;|,}] string_name

Displays the prompt given in prompt_literal and reads user input from the keyboard,
storing it into the variable string_name . All input is read until Enter is pressed; the first 255
characters are stored. If the ; is given right after LINE INPUT , the Enter ending user input
is not echoed to the screen.

Parameters
• prompt_literal is a string literal. It makes no difference whether it is followed by

a comma or a semicolon.
• string_name is a string variable or array element.

Notes
• If user input is interrupted by Ctrl + Break , CONT will re-execute the LINE INPUT

statement.
• Unlike INPUT , LINE INPUT does not end the prompt with ? .

Statements

Language reference 189

LINE INPUT (files)
LINE INPUT # file_num, string_name

Reads string or numeric variables from a text file or the FIELD buffer of a random access
file. All input is read until Enter is pressed; the first 255 characters are stored. file_num

must be the number of a file open in INPUT mode or a random-access file open in RANDOM
mode.

Parameters
• string_name is a string variable or array element.

Notes
• The # is mandatory. There may or may not be whitespace between INPUT and

.
• Input is only terminated by a CR .
• If file_num is open to KYBD: , LINE INPUT# reads from the keyboard until a

return or comma is encountered (as in a file). Arrow keys and delete are passed
as their control characters (not scancodes!) preceded by CHR$(&hFF) .

Errors
• Input is requested after the end of a text file has been reached or an EOF char

has been encountered: Input past end .
• The last character of the field buffer is read: Field overflow .
• file_num is not an open file: Bad file number .
• file_num is less than zero: Illegal function call .
• file_num is not in [-32768—32767] : Overflow .
• file_num is not open for INPUT or RANDOM : Bad file mode .
• file_num has a string value: Type mismatch .
• file_num is open to a COM port and this is the first INPUT , LINE INPUT or

INPUT$ call on that port since the buffer has filled up completely (i.e.
LOF(file_num) has become zero): Communication buffer overflow .

190 PC-BASIC

LIST
LIST [line_number_0|.] [-[line_number_1|.]] [, file_spec [anything]]

Prints the program to the screen or a file, starting with line_number_0 up to and including
line_number_1 . Also stops program execution and returns control to the user. If the LIST

statement ends with a file specification, anything further is ignored. In all cases, any further
statements in a compound after LIST will be ignored, both in a program and in direct mode.

When listing to the screen, the same control characters are recognised as in the PRINT
statement.

Notes
• In GW-BASIC 3.23, LIST will not show line numbers 65531 — 65535 inclusive.

By default, PC-BASIC's LIST does show these lines. However, showing them
can be disabled with the option hide-listing=65530 .

Parameters
• line_number_0 and line_number_1 are line numbers in the range [0—65529] or

a . to indicate the last line edited. The line numbers do not need to exist; they
specify a range. If the range is empty, nothing is printed.

• The string expression file_spec is a valid file specification indicating the file to
list to. If this file already exists, it will be overwritten.

Errors
• A line number is greater than 65529 : Syntax error .
• file_spec has a numeric value: Type mismatch .
• file_spec ends in a colon but is not a device name or drive letter: Bad file

number .
• file_spec contains disallowed characters: Bad file number (on CAS1:); Bad

file name (on disk devices).

Statements

Language reference 191

LLIST
LLIST [line_number_0|.] [-[line_number_1|.]]

Prints the program to the line printer LPT1: , starting with line_number_0 up to and
including line_number_1 . Also stops program execution and returns control to the user. Any
further statements on a line after LLIST will be ignored, both in a program and in direct
mode.

Notes
• In GW-BASIC 3.23, LLIST will not show line numbers 65531 — 65535 inclusive.

By default, PC-BASIC's LLIST does show these lines. However, showing them
can be disabled with the option hide-listing=65530 .

Parameters
• line_number_0 and line_number_1 are line numbers in the range [0—65529] . or

a . to indicate the last line edited. The line numbers do not need to exist; they
specify a range. If the range is empty, nothing is printed.

Errors
• A line number is greater than 65529 : Syntax error .

192 PC-BASIC

LOAD
LOAD file_spec [, R]

Loads the program stored in a file into memory. Existing variables will be cleared and any
program in memory will be erased. LOAD implies CLEAR . Also stops program execution and
returns control to the user. Any further statements on the line will be ignored, also in direct
mode.

If ,R is specified, keeps all data files open and runs the specified file.

Parameters
• The string expression file_spec is a valid file specification indicating the file to

read the program from.

Errors
• file_spec has a numeric value: Type mismatch .
• file_spec contains disallowed characters: Bad file number (on CAS1:); Bad

file name (on disk devices).
• The file specified in file_spec cannot be found: File not found .
• A loaded text file contains lines without line numbers: Direct statement in file .
• A loaded text file contains lines longer than 255 characters: Line buffer

overflow . Attempting to load a text file that has LF rather than CR LF line
endings may cause this error.

Statements

Language reference 193

LOCATE
LOCATE [row] [, [col] [, [cursor_visible] [, [start_line] [, [stop_line] [,]]]]]

Positions the cursor at row , col on the screen and changes the cursor shape and
visibility. cursor_visible may be 0 or 1. If cursor_visible is 0, it makes the cursor
invisible; if it is 1, makes the cursor visible. This works only while a program is running. The
cursor shape is adjusted within a character cell to start from start_line and end on
end_line where start_line and end_line are in [0—31] . If start_line or end_line is

greater than the character cell height (15), substitute 15.

Notes
• On emulated VGA cards, the cursor shape parameters are interpreted in a

complicated way that is intended to maintain functional compatibility with CGA.
• In GW-BASIC, cursor shape is preserved after pressing Ins twice. The insert-

mode cursor is different from the usual half-block. In PC-BASIC, insert mode
resets the cursor shape to default.

• Cursor shape and visibility options have no effect in graphics mode.
• Locate accepts a 5th comma at the end, which is ignored.

Errors
• Any parameter has a string value: Type mismatch .
• Any parameter is not in [-32768—32767] : Overflow .
• row is outside the current view area: Illegal function call .
• col is greater than the current width: Illegal function call .
• cursor_visible is not in [0, 1] ([0—255] on Tandy/PCjr): Illegal function

call .

194 PC-BASIC

LOCK
LOCK [#] file_number [, record_0]

LOCK [#] file_number, [record_0] TO record_1

Locks a file or part of a file against access by other users. On a RANDOM file, record_0 is
the first record locked and record_1 is the last record locked. On any other kind of file
record_0 and record_1 have no effect. If record_0 is not specified, it is assumed to be 1.

If no records are specified, the whole file is locked.

Parameters
• file_number is a numeric expression in [0—255] .
• record_0 and record_1 are numeric expressions in [1—2^25-2] .

Notes
• In GW-BASIC under MS-DOS, the LOCK command requires SHARE.EXE to be

loaded. The maximum number of locks is specified in the MS-DOS SHARE
command. If SHARE has not been activated or all locks are used, LOCK raises
Permission denied . PC-BASIC behaves as if SHARE has been activated with

unlimited locks.
• If file_number is open for RANDOM , LOCK and UNLOCK statements must match

in terms of record_0 and record_1 . An non-matching UNLOCK will raise
Permission denied .

• To check if another open file is the same file, PC-BASIC only looks at the base
name of the file, i.e. its DOS name without directories. As a consequence, if a file
"test.txt" is open and locked, an attempt to lock a file "dir\test.txt" will fail,

even if these are different files. Conversely, if two file names are different but point
to the same file in the file system (for example due to file system links), then these
will be considered as different files by BASIC.

Errors
• Any parameter has a string value: Type mismatch .
• file_num is not in [-32768—32767] : Overflow .
• file_num is not in [0—255] : Illegal function call .
• file_num is not an open file: Bad file number .
• LOCK (part of) a file with the same name as a file already locked: Permission

denied .
• record_0 or record_1 is not in [1—2^25-2] : Bad record number .

Statements

Language reference 195

LPRINT
See PRINT .

LSET
LSET string_name = expression

Copies a string value into an existing string variable or array element. The value will be left-
justified and any remaining characters are replaced by spaces.

Parameters
• string_name is a string variable or array element.
• expression is a string expression.

Notes
• If expression has a value that is longer than the length of the target variable, it is

truncated at the tail to the length of the target variable.
• If string_name has not been allocated before, this statement has no effect.
• Use LSET , RSET or MID$ to copy values into a FIELD buffer.
• If LET is used on a FIELD variable instead of L|RSET , the variable is detached

from the field and a new, normal string variable is allocated.

Errors
• string_name is not a string variable: Type mismatch .
• expression does not have a string value: Type mismatch .

196 PC-BASIC

MERGE
MERGE file_spec

Overlays the lines of a program from a plain-text program file into the existing program. The
loaded lines overwrite existing lines if they have the same line number.

Also stops program execution and returns control to the user. Any further statements on the
line will be ignored, also in direct mode.

Parameters
• The string expression file_spec is a valid file specification indicating the file to

read the program from.

Errors
• file_spec cannot be found: File not found .
• file_spec contains disallowed characters: Bad file number (on CAS1:); Bad

file name (on disk devices).
• file_spec was not saved as plain text: Bad file mode .
• A loaded text file contains lines without line numbers: Direct statement in file .
• A loaded text file contains lines longer than 255 characters: Line buffer

overflow . Attempting to load a text file that has LF rather than CR LF line
endings may cause this error.

Statements

Language reference 197

MID$ (statement)
MID$(string_name, position [, length]) = substring

Replaces part of string_name with substring .

Parameters
• string_name is a valid string variable name.
• position is a numeric expression between 1 and the string length, inclusive.
• length is a numeric expression in [0—255] .

Notes
• No whitespace is allowed between MID$ and (.
• If substring is longer than length , only the first length characters are used.
• If substring is shorter than length , only LEN(substring) characters are

replaced.

Errors
• position is greater than the length of string_name : Illegal function call ,

except if length is specified as 0.
• position is not in [1—255] : Illegal function call .
• length is not in [0—255] : Illegal function call .
• position or length are not in [-32768—32767] : Overflow .

MKDIR
MKDIR dir_spec

Creates a new directory on a disk device.

Parameters
• The string expression dir_spec is a valid file specification that specifies the path

of the new directory on a disk device.

Errors
• dir_spec is not a string: Type mismatch .
• The parent directory does not exist: Path not found .
• The directory name already exists on that path: Path/File access error .
• The user has no write permission: Permission denied .

198 PC-BASIC

MOTOR
MOTOR [num]

Does nothing.

Parameters
• num is a numeric expression in [0—255] .

Notes
• In GW-BASIC, this statement turns on the cassette motor if num is nonzero or

omitted, and turns it off if num is zero. This is not implemented in PC-BASIC.

Errors
• num has a string value: Type mismatch .
• num is not in [-32768—32767] : Overflow .
• num is not in [0—255] : Illegal function call .

NAME
NAME old_name AS new_name

Renames the disk file old_name into new_name .

Parameters
• The string expressions old_name and new_name are valid file specifications

giving the path on a disk device to the old and new filenames, respectively.

Notes
• new_name will be modified into all-uppercase 8.3 format.

Errors
• old_name or new_name have number values: Type mismatch .
• old_name does not exist: File not found .
• A file with a base name equal to that of old_name or new_name is open: File

already open .
• new_name exists: File already exists .

Statements

Language reference 199

NEW
NEW

Stops execution of a program, deletes the program in memory, executes CLEAR and
RESTORE and returns control to the user.

NEXT
NEXT [var_0 [, var_1] ...]

Iterates a FOR—NEXT loop: increments the loop variable and jumps to the FOR statement. If
no variables are specified, next matches the most recent FOR statement. Several nested
NEXT statements can be consolidated into one by using the variable list. If one or more

variables are specified, their order must match the order of earlier FOR statements.

Parameters
• var_0, var_1, ... are numeric variables which are loop counters in a FOR

statement.

Errors
• No FOR statement is found to match the NEXT statement and variables: NEXT

without FOR .
• var_0, var_1, ... are string variables: NEXT without FOR .
• The (implicit or explicit) loop variable is an integer variable and is taken outside the

range [-32768, 32767] when incremented after the final iteration: Overflow .

200 PC-BASIC

NOISE
NOISE source, volume, duration

Generates various kinds of noise.

Parameters
• source is a numeric expression in [0—7] . It indicates the type of noise:

source type top of frequency band (Hz)
0 periodic 6991
1 periodic 3495
2 periodic 1747
3 periodic last tone played on voice 2
0 white noise 6991
1 white noise 3495
2 white noise 1747
3 white noise last tone played on voice 2

• volume is a numeric expression in [0—15] .
• duration is a numeric expression.

Volume and duration are determined in the same way as for the SOUND statement; see
there.

Notes
• This statement is only available if syntax={pcjr|tandy} is set.

Errors
• SOUND ON has not been executed: Illegal function call .
• duration is not in [-65535—65535] : Illegal function call .
• volume is not in [0—15] : Illegal function call .
• source is not in [0—7] : Illegal function call .

Statements

Language reference 201

ON (calculated jump)
ON n {GOTO|GOSUB} line_number_0 [, line_number_1] ...

Jumps to the n th line number specified in the list. If n is 0 or greater than the number of
line numbers in the list, no jump is performed. If GOTO is specified, the jump is unconditional;
if GOSUB is specified, jumps to a subroutine.

Parameters
• n is a numeric expression in [0—255] . The expression must not start with the

STRIG , PEN , PLAY or TIMER function keywords; if you need these functions,
the expression must be bracketed.

• line_number_0, line_number_1, ... are existing line numbers in the program.

Errors
• n has a string value: Type mismatch .
• n is not in [-32768—32767] , Overflow .
• n is not in [0—255] : Illegal function call .
• The line number jumped to does not exist: Undefined line number .

202 PC-BASIC

ON (event trapping)
ON {COM(n)|KEY(n)|STRIG(n)|PEN|PLAY(n)|TIMER(x)} GOSUB line_number

Defines an event trapping subroutine. The type of event is given by one of the following
keywords:

COM(n) The event is triggered if data is present in the input buffer of the COMn:. n is the
port number in [1,2].

KEY(n) The event is triggered if key n is pressed. n is the key number [1—20] defined in
the KEY statement.

STRIG(n) They event is triggered if fire button n is pressed. n in [0,2,4,6] refer to the two
fire triggers on two joysticks.

PEN The event is triggered if the light pen is on the screen. (In PC-BASIC, the light
pen is emulated by default by the right mouse button).

PLAY(n) The event is triggered if there are exactly n notes left on the music background
queue. n is a numeric expression in [1—32].

TIMER(x) The event is triggered every x seconds after the TIMER ON statement. x is a
numeric expression in [1—86400].

Notes
• Event trapping for your chosen event first needs to be enabled using one of the

statements: COM(n) ON , KEY(n) ON , STRIG(n) ON , PEN ON , PLAY ON , TIMER
ON

• Events are only trapped when a program is running.

Errors
• n or x has a string value: Type mismatch .
• n is not in [-32768—32767] : Overflow .
• n or x is outside the specified range: Illegal function call .

Statements

Language reference 203

ON ERROR
ON ERROR GOTO {line_number|0}

Turns error trapping on or off. When line_number is set, any error causes the error handling
routine starting at that line number to be called; no message is printed and program
execution is not stopped. The error handling routine is ended by a RESUME statement. While
in an error handling routine, events are paused and error trapping is disabled. After the
RESUME statement, any triggered events are picked up in the following order: KEY , TIMER ,
PLAY - the order of the others is unknown. Unlike event trapping, error trapping remains

active when no program is running. ON ERROR GOTO 0 turns off error trapping.

Parameters
• line_number is an existing line number in the program.

Notes
• It is not possible to start the error handler at line number 0 .

Errors
• line_number does not exist: Undefined line number .

204 PC-BASIC

OPEN
OPEN mode_char, [#] file_num, file_spec [, rec_len]

OPEN file_spec [FOR {INPUT|OUTPUT|APPEND|RANDOM}] [ACCESS {READ|WRITE|READ WRITE}]
[SHARED|LOCK {READ|WRITE|READ WRITE}] AS [#] file_num [LEN = rec_len]

Opens a data file on a device.

Parameters
• The string expression file_spec is a valid file specification.
• file_num is a numeric expression in [1—max_files] , where max_files is the

maximum file number (default 3).
• rec_len is a numeric expression in [1—128] : the record length.
• mode_char is a string expression of which the first character is one of ["I", "O",

"A", "R"] .

Access modes
The FOR modes or mode_char are as follows:

mode_char FOR Effect
"I" INPUT Opens a text file for reading and positions the file pointer at the start.
"O" OUTPUT Truncates a text file at the start and opens it for writing. Any data

previously present in the file will be deleted.
"A" APPEND Opens a text file for writing at the end of any existing data.
"R" RANDOM Opens a file for random access; the file is divided in records of

length rec_len. If LEN is not specified, the record length defaults to
128. The file contents can be accessed using GET and PUT of the
FIELD buffer; the FIELD buffer can be accessed through FIELD
variables or through PRINT# and INPUT# statements.

If no FOR mode or mode_char is specified, the file is opened for RANDOM .

If both FOR and ACCESS are specified, any ACCESS mode is allowed for RANDOM but for the
other modes the access must match as follows:

Statements

Language reference 205

FOR default ACCESS allowed ACCESS
INPUT READ READ
OUTPUT WRITE WRITE
APPEND READ WRITE READ WRITE
RANDOM READ WRITE all

Sharing and locks
If neither SHARED nor LOCK are specified. Inside this process, a file may be opened multiple
times for INPUT or RANDOM but only once for OUTPUT or APPEND , as long as it is again
opened in default mode. It may not be opened in SHARED or any LOCK modes.

If SHARED , LOCK READ , LOCK WRITE or LOCK READ WRITE is specified, whether two OPEN
statements may access the same file depends on one's LOCK status and the other's
ACCESS status and vice versa. For two OPEN statements as follows:

OPEN "file" lock_1 AS 1
OPEN "file" ACCESS acc_2 SHARED AS 2

the following combinations are allowed:

Access allowed acc_2

READ WRITE READ WRITE
lock_1 SHARED yes yes yes

LOCK READ no yes no
LOCK WRITE yes no no
LOCK READ WRITE no no no

In GW-BASIC under MS-DOS with SHARE.EXE active, these locks should be enforced across
a network as well as inside a single BASIC process. Without SHARED and LOCK , the file is
locked exclusively for use by the GW-BASIC process. By contrast, in PC-BASIC, the locks
are only implemented internally. Whether other processes may access the file will depend on
the host OS.

To check if another open file is the same file, PC-BASIC only looks at the base name of the
file, i.e. its DOS name without directories. As a consequence, if a file "test.txt" is open
and locked, an attempt to lock a file "dir\test.txt" will fail, even if these are different files.
Conversely, if two file names are different but point to the same file in the file system (for
example due to file system links), then these will be considered as different files by BASIC.

206 PC-BASIC

File specifications
A file specification file_spec is a non-empty string expression of the form
"[device:]parameters" , where device is a PC-BASIC device and the form of the
parameters is specific to the type of device. If device is omitted, the current device (one of

the disk devices or CAS1:) is used.

Disk devices A: — Z: and @:

parameters must specify a valid file path of the form [\][dirname\] ... filename .

PC-BASIC follows DOS file system conventions. Directory names are separated with
backslashes \ (even if the host OS separates paths with forward slashes). File and
directory names consist of a 8-character name and 3-character extension. Names are
case insensitive. Permissible characters for both filename and extension are the
printable ASCII characters in the range &h20 – &h7E excluding the characters " * +
. , / : ; < = > ? \ [] | . Spaces are allowed but leading and trailing spaces are
ignored. The names AUX , CON , PRN and NUL are reserved as device aliases and
are not legal names for files or directories on a disk device.

A path starting with a backslash is interpreted as an absolute path, starting at the root
of the specified disk device. Otherwise, the path is interpreted as relative to the
current directory on the specified device. The special directory name .. refers to the
parent directory of a preceding path, or the parent directory of the current directory if
no path is given. The special directory name . refers to the same directory as given
by the preceding path, or the current directory if no preceding path is given.

If the file name provided does not contain any dots, the LOAD , SAVE , BLOAD ,
BSAVE , CHAIN , MERGE , RUN , and LIST statements append the default extension
.BAS . To refer to a file name without an extension, the file specification should end in

a dot . . For other statements, appending a dot is allowed but not required.

Compatibility notes
Unlike PC-BASIC, some versions of MS-DOS allow certain characters in the range
&h7F – &hFF . However, their permissibility and interpretation depends on the console

code page, which may be different from the display code page that affects GW-
BASIC. Depending on its console code page, MS-DOS will replace accented letters
by their unaccented uppercase variant. Some DOS implementations will remove
spaces from filenames; notably, this is the case on DOSBox.

In order to allow access to files whose name on the host system does not conform to
DOS standards while maintaining compatibility with GW-BASIC, PC-BASIC will follow
these steps to match DOS-style file names to host file names:

Statements

Language reference 207

1. Look for a file with the name as provided. This can be a long file name which
may contain non-permissible characters and which will be case sensitive if
your file system is.

2. If such a file is not found, it will truncate the name provided to all-uppercase
8.3 format and look for an exact match. The truncated name consists of the
first 8 characters before the first dot, followed by the first three characters
after the first dot. If the resulting file name contains non-permissible
characters, an error will be raised.

3. Look for 8.3 names in mixed case which match the name provided in a case-
insensitive way. Such files are searched in lexicographic order. File names
longer than 8.3 will not be matched, unless their name is entered exactly. On
Windows, the name matched can be a short filename as well as a long
filename provided it is of 8.3 length — it may, for example, contain spaces
and thus not be a valid Windows short file name.

If the file name provided ends in a single dot and contains no other dots, PC-BASIC
will first match the name as provided; if this is not found, it will match the name as
provided but without the single dot. The 8.3 format of such a file name will match file
names with and without the dot, in lexicographic order.

If no matching file is found for an output file name, a new file will be created with an
all-uppercase 8.3 file name.

Cassette device CAS1:
parameters can be a file name of up to eight characters. Cassette file names are

case sensitive, have no path or extension, may be empty and do not need to be
unique. They may contain any character in the range &h20 – &hFF . On the cassette
device, when called in direct mode, OPEN , CHAIN , MERGE , LOAD and BLOAD will
print a message to the console for each file found while winding the tape. The
message consists of the filename followed by a dot and the file type and concluded
with a status message. The file type is one of the following:

A Program file in text format
B Program file in tokenised format
D Data file
M BSAVE memory image
P Program file in protected format

If the file does not match the file specification and required file type, the status is
Skipped ; if the file matches, the status is Found . When called from a program, these

statements do not print messages to the console. If the device was specified
explicitly, parameters may also be empty. In this case the first file of the appropriate
type is opened.

208 PC-BASIC

Console and parallel devices SCRN: , KYBD: , and LPTn:
These devices do not allow further device parameters.

Serial devices COMn:

When opening a COM port, the file_spec has the form

"COMn:[speed[,parity[,data[,stop[,RS][,CS[n]][,DS[n]][,CD[n]][,LF][,PE]]]]]"
The first four parameters after the device colon must be given in the order specified
but the named parameters can be given in any order. The meaning of the parameters
is:

Statements

Language reference 209

Parameter Default Meaning
speed 300 Baud (bps) rate for the connection. speed is one of [75,

110, 150, 300, 600, 1200, 1800, 2400, 4800, 9600].
parity E Parity bit convention. parity is one of [S, M, O, E, N].

parity Meaning Effect
S SPACE Parity bit always set to 0.
M MARK Parity bit always set to 1.
O ODD Parity bit set so that character

parity is odd.
E EVEN Parity bit set so that character

parity is even.
N NONE No parity bit transmitted or

received.

data 7 Data bits per byte. data must be one of [4, 5, 6, 7, 8]. A
byte consists of the data bits plus parity bit, if any. Byte
size must be in the range [5—8]: if data is 4, parity must
not be N; if data is 8, parity must be N.

stop 1 The number of stop bits. stop must be 1 or 2. Default is 2 if
speed is 75 or 110; 1 otherwise.

RS no Suppress Request To Send.
CS[n] CS1000 Set Clear To Send timeout to n milliseconds. If n is 0 or not

given, disable CTS check. Default is CS0 if RS is set; CS1000
otherwise.

DS[n] DS1000 Set Data Set Ready timeout to n milliseconds. If n is 0 or
not given, disable DSR check.

CD[n] CD0 Set Carrier Detect timeout to n milliseconds. If n is 0 or not
given, disable CD check.

LF no Send a line feed after each carriage return.
PE no Enable parity checking (This setting is ignored by PC-

BASIC).

Notes
• If a COM port is opened for RANDOM , access is byte-for-byte rather than through

FIELD records; PRINT# and INPUT# access the port directly. rec_len sets the
number of bytes read by the GET and PUT statements.

• For INPUT , OUTPUT and APPEND modes, LEN may be specified but is ignored.
• If I/O is attempted contravening the FOR mode specified, the PRINT or INPUT

210 PC-BASIC

statement will raise Bad file mode .
• If RANDOM I/O is attempted contravening the ACCESS mode specified, the PUT or

GET statement will raise Path/File access error .
• The # is optional and has no effect.

Errors
• file_spec is empty or a non-existent device: Bad file number .
• FOR APPEND ACCESS WRITE is specified: Path/File access error .
• FOR and ACCESS mismatch in other ways: Syntax error .
• The COM: file_spec parameters do not follow the specification: Bad file

name .
• The CAS1: file_spec contains disallowed characters: Bad file number .
• A file with the same name is already open for OUTPUT or APPEND : File already

open . This is only raised for COMn: , CASn: and disk devices.
• rec_len or file_num have string values: Type mismatch .
• file_spec or mode_char have number values: Type mismatch .
• file_num is not in [-32768—32767] : Overflow .
• file_num is not in [0—255] : Illegal function call .
• file_num is not in [1—max_files] : Bad file number .
• rec_len is not in [-32768—32767] : Overflow .
• rec_len is not in [1—128] : Illegal function call .
• mode_char is empty or the first character is not in ["I", "O", "A", "R"] : Bad

file mode .

Statements

Language reference 211

OPTION BASE
OPTION BASE n

Sets the starting index of all arrays to n .

Parameters
• n is a literal digit 0 or 1 . Expressions are not allowed.

Notes
• If OPTION BASE has not been called, the first array allocation defaults to starting

index 0.

Errors
• n is not a digit 0 or 1 : Syntax error .
• OPTION BASE 1 is called but an array has already been allocated before:

Duplicate definition .
• OPTION BASE is called more than once with different starting index: Duplicate

definition .

212 PC-BASIC

OUT
OUT port, value

Sends a byte to an emulated machine port.

The following machine ports are emulated in PC-BASIC:

port Effect
&h201 resets the game port (joystick port)
&h3C5 sets the write bitmask for SCREEN 7, 8, 9 colour planes. bitmask = 2 ^ value.
&h3CF sets the read colour plane to value.
&h3D8 if value = &h1A, enable composite colorburst.

if value = &h1E, disable composite colorburst.
Requires video={cga, tandy, pcjr}.

Notes
• Only a limited number of machine ports are emulated.
• In GW-BASIC under MS-DOS, the sequence needed to set the colour plane mask

is:

OUT &h3C4, 2
OUT &h3C5, 2 ^ plane

The sequence needed to set the colour plane is:

OUT &h3CE, 4
OUT &h3CF, plane

The initial OUT statements currently have no effect in PC-BASIC.

Parameters
• port is a numeric expression in [-32768—65535] .
• value is a numeric expression in [0—255] .

Errors
• port or value has a string value: Type mismatch .
• port is not in [-32768—65535] : Overflow .
• value is not in [-32768—32767] : Overflow .
• value is not in [0—255] : Illegal function call .

Statements

Language reference 213

PAINT
PAINT [STEP] (x, y) [, attrib [, border [, background]]]

Flood-fills the screen with a colour or pattern, starting from the given seed point.

Parameters
• x , y are numeric expressions in the range [-32768—32767] If STEP is

specified, x y are offsets from the current position. If the seed point is outside
the visible screen area, no flood fill is performed.

• attrib is an expression that specifies the fill attribute or pattern. If not specified,
the current foreground attribute is used.

• If attrib has a number value, it must be in [0—255] ; it specifies the colour
attribute used to fill.

• If attrib has a string value, it specifies a tile pattern (see below).
• border is a numeric expression in [0—255] . It specifies the attribute of the fill

boundary (see below).
• background is a string expression that represents a background tile pattern to

ignore when determining boundaries (see below).

Tile patterns
A tile pattern can be specified by a string of up to 255 characters. The interpretation of the
string depends on the number of bits per pixel and on the current screen mode.

1 bit per pixel (e.g. SCREEN 2)
Here is an example:

76543210 Byte value
*....... &h80
.*...... &h40
..*..... &h20
...*.... &h10
....*... &h08
.....*.. &h04
......*. &h02

This diagonal stripe pattern can thus be produced with

PAINT (0, 0), CHR$(128)+CHR$(64)+CHR$(32)+CHR$(16)+CHR$(8)+CHR$(4)+CHR$(2)

214 PC-BASIC

SCREEN 7 , 8 , 9
The tile pattern is always 8 pixels wide. The first character in the pattern string
contains the first bit of each of these 8 pixels, the second character contains the
second bits, etc. For example, in a 2-bits-per-pixel mode, four colour attributes can be
used in the pattern. To create a diagonal stripe pattern of the same shape, in attribute
&h03 , we now need a tile string that is twice as long:

Attribute bit 76543210 Byte value
0 *....... &h80
1 *....... &h80
0 .*...... &h40
1 .*...... &h40
0 ..*..... &h20
1 ..*..... &h20
0 ...*.... &h10
1 ...*.... &h10
0*... &h08
1*... &h08
0*.. &h04
1*.. &h04
0*. &h02
1*. &h02

If the pattern string is truncated before all bits of the last line have been defined, the
remaining bits will be zero.

SCREEN 1 , 3 , 4 , 5 , 6
Each row of the tile pattern represents a screen row. Colours are encoded in
consecutive bits; the more bits per pixel, the narrower the pattern is. For 2 bits per
pixel, the pattern is 4 pixels wide; for 4 bits per pixel it is 2 pixels wide. The following
pattern string encodes a diagonal dotted stripe in two colours:

Statements

Language reference 215

3210 76543210 Byte value
2000 *....... &h80
1000 .*...... &h40
0200 ..*..... &h20
0100 ...*.... &h10
0020*... &h08
0010*.. &h04
0002*. &h02

The tile pattern is anchored to the screen; imagine a grid starting at (0,0) and covering the
screen. Whenever an area is tile-filled, the tiles are put into this grid. In this way, adjacent
areas will have continuous tiling even if they were filled from different seed points.

Boundaries
A solid flood fill stops at pixels that have the same attribute as the fill or that have the
specified border attribute, if specified. A tiling flood fill stops at the specified border attribute;
if no border attribute is specified, it stops at the current foreground attribute. A tiling flood fill
also stops at scan line intervals that are the same as the tiling pattern for that line, unless a
background pattern is specified and the interval also equals the background pattern for that
line.

The background tile pattern is constructed just like the tile pattern. However, only the first row
of the background tile is taken into account; the rest is ignored. The background tile must not
match the attribute tile, or more than two consecutive rows of it.

Errors
• If more than two consecutive rows of the attribute tile (or all rows, if there are less

than three) equal the first row of the background tile: Illegal function call .
• background has a number value: Illegal function call .
• border , x , or y have a string value: Type mismatch .
• border , x , or y are not in [-32768—32767] : Overflow .
• border is not in [0—255] : Illegal function call .
• attrib is numeric and not in [-32768—32767] : Overflow .
• attrib is numeric and not in [0—255] : Illegal function call .

216 PC-BASIC

PALETTE
PALETTE [attrib, colour]

Assigns a colour to an attribute. All pixels with that attribute will change colour immediately. If
no parameters are specified, PALETTE resets to the initial setting.

Parameters
• attrib is a numeric expression between 0 and the current palette size, less one.
• colour is a numeric expression between -1 and the maximum number of colours

for the current screen mode, less one. If colour equals -1, the palette remains
unchanged.

Errors
• attrib or colour has a string value: Type mismatch .
• attrib or colour is not in [-32768—32767] : Overflow
• attrib or colour is not in range: Illegal function call

Statements

Language reference 217

PALETTE USING
PALETTE USING int_array_name {(|[} start_index {)|]}

Assigns new colours to all attributes.

Parameters
• int_array_name is a single- or multidimensional array of integers (%) that will

supply the new values for the palette.
• start_index is a numeric expression that indicates at which index in the array to

start mapping to the palette.

Notes
• Array values are assigned to palette entries in the order in which they are stored in

memory. See Arrays for details about the layout of arrays in memory.
• If an array entry has value -1 , the matching attribute is left unchanged.

Errors
• int_array_name has not been allocated: Illegal function call . The array will

not be automatically allocated.
• int_array_name is not an integer array: Type mismatch .
• int_array_name is too short: Illegal function call .
• start_index has a string value: Type mismatch .
• start_index is not in [-32768—32767] : Overflow
• start_index is outside array dimensions: Subscript out of range

PCOPY
PCOPY src, dst

Copies the screen page src to dst . All text and graphics on dst is replaced by those of
src .

Parameters
• src and dst are numeric expressions between 0 and the current video mode's

number of pages, less one.

Errors
• src or dst has a string value: Type mismatch .
• src or dst is not in [-32768—32767] : Overflow .
• src or dst is out of range: Illegal function call .

218 PC-BASIC

PEN (statement)
PEN {ON|OFF|STOP}

Controls event trapping and read access of the light pen (emulated through the mouse in PC-
BASIC). PEN ON switches pen reading and trapping on. PEN OFF switches it off. PEN STOP
suspends PEN event trapping until PEN ON is executed. Up to one event can be triggered
during suspension, provided that event handling was switched on prior to suspension. The
event triggered during suspension is handled immediately after the next PEN ON statement.

PLAY (event switch)
PLAY {ON|OFF|STOP}

• ON : enables ON PLAY event trapping of the music queue.
• OFF : disables trapping.
• STOP : halts trapping until PLAY ON is used. Events that occur while trapping is

halted will trigger immediately when trapping is re-enabled.

Statements

Language reference 219

PLAY (music statement)
PLAY [mml_string_0] [, [mml_string_1] [, mml_string_2]]

Plays the tune defined by the Music Macro Language strings mml_string_0,

Unless syntax={tandy | pcjr} is set, only the single-voice syntax is available. The three
separate MML strings correspond to the three voices of the PCjr/Tandy sound adapter. The
notes in these strings are played synchronously.

Parameters
• mml_string_0 , mml_string_1 , mml_string_2 are string expressions in MML.
• At least one parameter must be provided and the statement must not end in a

comma.

Music Macro Language reference
Notes and Pauses

Command Effect
{A|B|C|D|E|F|G}[#|+|-][m] Play a note.

+ or # indicates sharp.
- indicates flat.
m is a numeric literal and indicates duration of an mth note. m
is in the range [0—64]. If m=0 or omitted, use the default
length.

Nn Play note n, in the range [0—84] (7 octaves).
n = 0 means rest.

On Set the current octave to n, in the range [0—6]. Default is 4.
> Increase the current octave by 1, with a maximum of 6.
< Decrease the current octave by 1, with a minimum of 0.
Pn Pause for the duration of an nth note. n is in the range

[0—64]. If n=0, this has no effect.

220 PC-BASIC

Timing commands

Command Effect
. Increase the duration of the preceding note by 1/2 times its normal duration.

Periods can be repeated to increase duration further.
Ln Set the duration of following note to an nth note. (n=4 is a quarter note, etc.)

n is in the range [1—64].
MN Normal: 7/8 of the duration is sound, with 1/8 silence. Default mode.
ML Legato: full duration is sound.
MS Staccato: 3/4 of the duration is sound, with 1/4 silence.
Tn Sets the tempo to n L4s per minute. n is in the range [32—255]. Default is

120.

Background-mode commands

These commands affect SOUND , PLAY and BEEP

Command Effect
MB Turns on background mode; sound commands exit without waiting for the

music to finish. The music keeps playing while other commands are
executed. There can be up to 32 notes in the background music queue; if
more notes are played, PLAY will block until there are only 32 left. Note that
the gaps between notes in the default articulation and in staccato are
counted as separate notes on the queue.

MF Turns off background mode; sound commands block. Default mode.

Subroutine command

Command Effect
Xs Execute substring. s is one of the following:

• a string variable name followed by a ;
• the result of VARPTR$() on a string variable

Volume control

Volume control is available on syntax={tandy | pcjr} only:

Command Effect
Vn Set the volume to n, in the range [-1—15]. -1 means full volume. If SOUND ON

has not been executed, this has no effect.

Statements

Language reference 221

MML Parameters

Numeric variables n in the commands above can be:

• an integer literal, e.g. PLAY "L4G"
• a numeric variable name or array element var preceded by = and followed by

; . For example, PLAY "L=VAR;G" or PLAY "L=A(1);G"
• the result of VARPTR$(var) preceded by = . For example, PLAY "L=" +

VARPTR$(VAR) + "G"

Note that only number literals may follow named notes and dereferencing variables or arrays
is not allowed there. It is an error to write PLAY "G=VAR;" or PLAY "G=" + VARPTR$(VAR) .
Use PLAY "G4" or PLAY "L=VAR;G" or PLAY "L=" + VARPTR$(VAR) + "G" instead.

Commands may optionally be separated by one semicolon ; , but not by more than one.

Errors
• mml_string has a numeric value: Type mismatch .
• mml_string has errors in the MML: Illegal function call .
• A variable in an MML string is of incorrect type: Type mismatch .
• No MML string is specified: Missing operand .
• If SOUND ON has not been executed, using the three-voice syntax will raise Syntax

error .

222 PC-BASIC

POKE
POKE address, value

Sets the value of the memory byte at segment * 16 + address to value , where segment

is the current segment set with DEF SEG .

Parameters
• address is a numeric expression in [-32768—65535] . Negative values are

interpreted as their two's complement.
• value is a numeric expression in [0—255] .

Notes
• The memory is only partly emulated in PC-BASIC. See Memory model for

supported addresses. Outside emulated areas of memory, this statement has no
effect.

Errors
• address or value has a string value: Type mismatch .
• address is not in [-32768—65535] : Overflow .
• value is not in [-32768—32767] : Overflow .
• value is not in [0—255] : Illegal function call .

Statements

Language reference 223

PSET and PRESET
{ PSET | PRESET } [STEP] (x, y) [, attrib]

Change the attribute of a pixel on the screen at position (x, y) . If STEP is specified, (x,
y) is an offset from the current position.

If attrib is between 0 and the screen mode's palette size, the pixel is changed to attribute
attrib . If attrib is larger than the palette size, the pixel's attribute is changed to the

highest legal attribute value. If attrib is not specified, PSET changes the attribute to the
current foreground attribute while PRESET changes it to zero.

Parameters
• x , y are numeric expressions in [-32768—32767] .
• attrib is a numeric expression in [0—255] .

Errors
• x or y has a string value: Type mismatch .
• attrib , x or y or the physical coordinates they translate into are not in

[-32768—32767] : Overflow .
• attrib is not in [0—255] : Illegal function call .

224 PC-BASIC

PRINT and LPRINT
{LPRINT|{PRINT|?} [# file_num,]} [expr_0|;|,|SPC(n)|TAB(n)] ... [USING format; uexpr_0

[{;|,} uexpr_1] ... [;|,]]

Writes expressions to the screen, printer, or file. If LPRINT is used, output goes to LPT1: . If
file_num is specified, output goes to the file open under that number. ? is a shorthand for
PRINT .

When writing a string expression to the screen, the following control characters have special
meaning. Other characters are shown as their corresponding glyph in the current codepage.

Code
point

Control
character

Effect

&h07 BEL Beep the speaker.
&h08 BS Erase the character in the previous column and move the

cursor back.
&h09 HT Jump to the next 8-cell tab stop.
&h0A LF Go to the leftmost column in the next row; connect the rows

to one logical line.
&h0B VT Move the cursor to the top left of the screen.
&h0C FF Clear the screen.
&h0D CR Go to the leftmost column in the next row.
&h1C FS Move the cursor one column to the right.
&h1D GS Move the cursor one column to the left.
&h1E RS Move the cursor one row up.
&h1F US Move the cursor one row down.

Expressions can optionally be separated by one or more of the following keywords:

Statements

Language reference 225

Keyword Effect
; Attaches two expressions tight together; strings will be printed without any

space in between, numbers will have one space separating them, in addition
to the space or minus sign that indicate the sign of the number.

, The expression after will be positioned at the next available zone. The output
file is divided in 14-character zones; if the width of the file is not a multiple of
14, the remaining spaces are unused and the first zone of the next line is
used instead. If the file has a width of less than 14 characters, the zones are
determined as if the file were wrapping continuously.

SPC(n) Produces n spaces, where n is a numeric expression. if n is less than zero, it
defaults to zero. If n is greater than the file width, it is taken modulo the file
width.

TAB(n) Moves to column n, where n is a numeric expression. if n is less than zero, it
defaults to zero. If n is greater than the file width, it is taken modulo the file
width. If the current column is greater than n, TAB moves to column n on the
next line.

If the print statement does not end in one of these four separation tokens, a newline is
printed after the last expression. String expressions can be separated by one or more
spaces, which has the same effect as separating by semicolons.

Format string syntax
A USING declaration occurs at the end of an [L]PRINT[#] statement and writes a formatted
string to the screen, printer or file. The following tables list the format tokens that can be used
inside the format string.

_ Escape character; causes the next character in the format string to be printed as is
rather than interpreted as a format token.

For string expressions:

! Prints the first character of a string.
\\ Prints 2 or more characters of a string. A greater number of characters is selected by

separating the \s by spaces.
& Prints the whole string.

For numeric expressions, the format string specifies a width and alignment.

226 PC-BASIC

Indicate a position for a digit.
. Indicate the decimal point.
, Before the decimal point: cause digits to be grouped in threes separated by commas.

After the decimal point it is not a token. Provides one digit position.

The number of characters in the field must not exceed 24.

Tokens preceding the number field:

+ Cause the sign to be printed for positive as well as negative numbers. The sign is to
be printed to the left of the number.

** Cause any leading spaces to be replaced with *s. Provides two digit positions.
$$ Cause a $ to be printed to the left of the number. Provides one digit position.

Tokens trailing the number field:

+ Cause the sign to be printed for positive as well as negative numbers. The sign will
be printed to the right of the number.

- Cause the sign for negative numbers to be printed to the right of the number. Note
that - preceding the field is not a token but printed literally.

^^^^ Specify that scientific notation is to be used, with a mantissa and an exponent
represented by E+00. In scientific notation, thousands separators will not be shown
and any , character has the same effect as #.

Numeric expressions are always fully printed, even if they do not fit in the positions specified.
If the number does not fit in the allowed space, a % is printed preceding it.

• If there are more expressions than format fields, the format string is wrapped
around.

• Expressions may be separated with semicolons or commas; the effect is the
same.

• If the USING declaration ends in a comma or semicolon, no newline is printed at
the end.

• After a USING declaration, other elements of the PRINT syntax such as SPC(
and TAB(can not be used.

Parameters
• expr_0, expr_1, ... are expressions of any type.
• format is a string expression that specifies the output format.
• uexpr_0, uexpr_1, ... are expressions matching a token in the format string.

Statements

Language reference 227

Notes
• If an error is raised, the output before the error was encountered is printed as

normal.
• In GW-BASIC, when formatting a number with a dollar sign, if the number is in the

range [-10000—-32767] and does not fit in the width of the number field, the
minus sign is omitted. This is not implemented in PC-BASIC.

Errors
• n has a string value: Type mismatch .
• n is not in [-32768—65535] : Overflow .
• The format string contains no tokens: Illegal function call .
• An expression doesn't match the corresponding format token type: Type

mismatch .
• A number field in the format string exceeds 24 characters: Illegal function

call .
• A number field in the format string contains no # characters: Illegal function

call .

PUT (files)
PUT [#] file_number [, record_number]

Writes a record to the random-access file file_number at position record_number .

Parameters
• file_number is a numeric expression that yields the number of an open random-

access file. The # is optional and has no effect.
• record_number is a numeric expression in [1—33554432] (2^25) and is

interpreted as the record number.

Notes
• The record number is stored as single-precision; this precision is not high enough

to distinguish single records near the maximum value of 2^25 .

Errors
• record_number is not in [1—33554432] : Bad record number .
• file_number is not in [0—255] : Illegal function call .
• file_number is not the number of an open file: Bad file mode .
• file_number is open under a mode other than RANDOM : Bad file mode .
• file_number is not specified: Missing operand .

228 PC-BASIC

PUT (communications)
PUT [#] com_file_number [, number_bytes]

Writes number_bytes bytes to the communications buffer opened under file number
com_file_number . number_bytes is a numeric expression between 1 and the COM buffer

length, inclusive.

Notes
• In GW-BASIC, Device I/O error is raised for overrun error, framing error, and

break interrupt. Device fault is raised if DSR is lost during I/O. A Parity error
is raised if parity is enabled and incorrect parity is encountered. This is according
to the manual; it is untested.

Errors
• bytes is less than 1: Bad record number .
• bytes is less than 32768 and greater than the COM buffer length: Illegal

function call .
• com_file_number is not specified: Missing operand .
• com_file_number is not in [0—255] : Illegal function call .
• com_file_number is not the number of an open file: Bad file number .
• The serial input buffer is full, i.e. LOF(com_file_number) = 0 and

LOC(com_file_number)=255 : Communication buffer overflow .

Statements

Language reference 229

PUT (graphics)
PUT (x0, y0), array_name [, {PSET|PRESET|AND|OR|XOR}]

Displays an array to a rectangular area of the graphics screen. Usually, PUT is used with
arrays that have been stored using GET . See GET for the format of the array.

The keywords have the following effect:

PSET Overwrite the screen location with the new image
PRESET Overwrite the screen location with the inverse image
AND Combines the old and new attributes with bitwise AND
OR Combines the old and new attributes with bitwise OR
XOR Combines the old and new attributes with bitwise XOR

Parameters
• array_name is a numeric array.
• x0 , y0 are numeric expressions.

Errors
• The array does not exist: Illegal function call .
• array_name refers to a string array: Type mismatch .
• x0 , y0 are string expressions: Type mismatch .
• x0 , y0 are not in [-32768—32767] : Overflow .
• x0 , y0 is outside the current VIEW or WINDOW : Illegal function call

230 PC-BASIC

RANDOMIZE
RANDOMIZE [expr]

Seeds the random number generator with expr . If no seed is specified, RANDOMIZE will
prompt the user to enter a random seed. The user-provided value is rounded to an integer.
The random seed is formed of the last two bytes of that integer or expr . If expr is a float (4
or 8 bytes), these are XOR ed with the preceding 2. The first 4 bytes of a double are ignored.
The same random seed will lead to the same sequence of pseudorandom numbers being
generated by the RND function.

Parameters
• expr is a numeric expression.

Notes
• For the same seed, PC-BASIC produces the same pseudorandom numbers as

GW-BASIC 3.23.
• The random number generator is very poor and should not be used for serious

purposes. See RND for details.

Errors
• expr has a string value: Illegal function call .
• The user provides a seed outside [-32768—32767] at the prompt: Overflow .

READ
READ var_0 [, var_1] ...

Assigns data from a DATA statement to variables. Reading starts at the current DATA
position, which is the DATA entry immediately after the last one read by previous READ
statements. The DATA position is reset to the start by the RUN and RESTORE statements.

Parameters
• var_0 , var_1 are variables or array elements.

Errors
• Not enough data is present in DATA statements: Out of DATA .
• The type of the variable is not compatible with that of the data entry being read: a

Syntax error occurs on the DATA line.

Statements

Language reference 231

REM
{REM|'} [anything]

Ignores everything until the end of the line. The REM statement is intended for comments.
Everything after REM will be stored in the program unaltered and uninterpreted. '
(apostrophe) is an alias for :REM' ; it can be placed at any point in the program line and will
ensure that the rest of the line is ignored.

Note that a colon : does not terminate the REM statement; the colon and everything after it
will be treated as part of the comment.

232 PC-BASIC

RENUM
RENUM [new|.] [, [old|.] [, increment]]

Replaces the line numbers in the program by a systematic enumeration starting from new

and increasing by increment . If old is specified, line numbers less than old remain
unchanged. new , old are line numbers; the dot . signifies the last line edited.
increment is a line number but must not be a dot or zero. Also stops program execution and

returns control to the user. Any further statements on the line will be ignored, also in direct
mode.

Notes
• Line numbers afer the following keywords will be renumbered: AUTO , EDIT ,

ELSE , ERL , DELETE , GOSUB , GOTO , LIST , LLIST , RENUM , RESTORE ,
RESUME , RETURN , RUN , THEN .

• Any line numbers in CHAIN statements will not be renumbered; note that these
line numbers refer to another program.

• All arguments of RENUM or AUTO statements in a program will be renumbered,
including any line number offsets or increments, even though that does not make
much sense.

• A zero line number following the keywords ERROR GOTO will not be renumbered.
• If a referenced line number does not exist in the program, a message Undefined

line ref in old_line is printed. Here, old_line is the line number prior to
renumbering. The referenced line number will be left unchanged, but the line's old
line number will be renumbered.

Errors
• Any of the parameters is not in [0—65529] : Syntax error .
• Any of the newly generated line numbers is greater than 65529 : Illegal

function call . The line numbers up to the error have not been changed.
• increment is empty or zero: Illegal function call .
• old is specified and new is less than or equal to an existing line number less

than old: Illegal function call .

Statements

Language reference 233

RESET
RESET

Closes all open files.

Notes
• Official GW-BASIC documentation and many other sources state that RESET

closes all files on disk devices. However, in reality GW-BASIC 3.23 also closes
files on tape and any other device, making this statement identical to CLOSE with
no arguments. PC-BASIC follows this behaviour.

RESTORE
RESTORE [line]

Resets the DATA pointer. line is a line number. If line is not specified, the DATA pointer
is reset to the first DATA entry in the program. If it is specified, the DATA pointer is reset to
the first DATA entry in or after line .

Errors
• line is not an existing line number: Undefined line number .

RESUME
RESUME [0|NEXT|line]

Continues normal execution after an error handling routine. If 0 or no option is specified, re-
executes the statement that caused the error. If NEXT is specified, executes the statement
following the one that caused the error. If line is specified, it must be a valid line number.

Errors
• RESUME is encountered outside of an error trapping routine: RESUME without

error .
• The program ends inside an error trapping routine without a RESUME or END

statement: No RESUME .
• line is not an existing line number: Undefined line number .

234 PC-BASIC

RETURN
RETURN [line]

Returns from a GOSUB subroutine. If line is not specified, RETURN jumps back to the
statement after the GOSUB that jumped into the subroutine. If line is specified, it must be a
valid line number. RETURN jumps to that line (and pops the GOSUB stack). When returning
from an error trapping routine, RETURN re-enables the event trapping which was stopped on
entering the trap routine.

Errors
• line is not an existing line number: Undefined line number .

RMDIR
RMDIR dir_spec

Removes an empty directory on a disk device.

Parameters
• The string expression dir_spec is a valid file specification that specifies the path

and name of the directory.

Errors
• dir_spec has a numeric value: Type mismatch .
• dir_spec is an empty string: Bad file name .
• No matching path is found: Path not found .
• Directory to remove is not empty: Path/File access error .

Statements

Language reference 235

RSET
RSET string_name = expression

Copies a string value into an existing string variable or array element. The value will be right-
justified and any remaining characters are replaced by spaces.

Parameters
• string_name is a string variable or array element.
• expression is a string expression.

Notes
• If expression has a value that is longer than the length of the target variable, it is

truncated at the tail to the length of the target variable.
• If string_name has not been allocated before, this statement has no effect.
• Use LSET , RSET or MID$ to copy values into a FIELD buffer.
• If LET is used on a FIELD variable instead of L|RSET , the variable is detached

from the field and a new, normal string variable is allocated.

Errors
• string_name is not a string variable: Type mismatch .
• expression does not have a string value: Type mismatch .

236 PC-BASIC

RUN
RUN [line_number [anything]|file_spec [, R]]

Executes a program. Existing variables will be cleared. RUN implies CLEAR . If file_spec is
given, any program in memory will be erased. If ,R is specified after file_spec , files are
kept open; if not, all files are closed.

Parameters
• line_number is a valid line number in the current program. If specified, execution

starts from this line number. The rest of the RUN statement is ignored in this case.
• The string expression file_spec , if specified, is a valid file specification indicating

the file to read the program from.

Errors
• line_number is not a line number in the current program: Undefined line

number .
• file_spec cannot be found: File not found .
• file_spec is an empty string: Bad file number .
• A loaded text file contains lines without line numbers: Direct statement in file .

Statements

Language reference 237

SAVE
SAVE file_spec [, {A|P}]

Stores the current program in a file.

• If ,A is specified, the program will be saved in plain text format. In this case,
program execution will stop and control will be returned to the user. Any further
statements on teh line will be ignored, also in direct mode.

• If ,P is specified, the program will be saved in protected format. When a
protected program is loaded in GW-BASIC, it cannot be LIST ed or SAVE d in
non-protected format.

• If neither is specified, the program will be saved in tokenised format.

Parameters
• The string expression file_spec is a valid file specification indicating the file to

store to.

Errors
• file_spec has a number value: Type mismatch .
• file_spec is an empty string: Bad file number .
• file_spec contains disallowed characters: Bad file number (on CAS1:); Bad

file name (on disk devices).
• hide-protected is enabled, the current program is protected and ,P is not

specified: Illegal function call .

238 PC-BASIC

SCREEN (statement)
SCREEN [mode] [, [colorburst] [, [apage] [, [vpage] [, erase]]]]

Change the video mode, composite colorburst, active page and visible page. Video modes
are described in the Video Modes section.

Parameters
• mode is a numeric expression that sets the screen mode.
• colorburst is a numeric expression. See notes below.
• apage is a numeric expression that sets the active page.
• vpage is a numeric expression that sets the visible page.
• erase is a numeric expression in the range [0, 1, 2] . It is only legal with

syntax={pcjr, tandy} . See notes below.

Video modes
The video modes are as follows:

SCREEN 0 Text mode
80x25 or 40x25 characters of 8x16 pixels
16 attributes picked from 64 colours
Attributes 16-31 are blinking versions of 0-15
4 pages ega

SCREEN 1 CGA colour
320x200 pixels
40x25 characters of 8x8 pixels
4 attributes picked from 16 colours; 2 bits per pixel
1 page ega 2 pages pcjr tandy

SCREEN 2 CGA monochrome
640x200 pixels
80x25 characters of 8x8 pixels
2 attributes picked from 16 colours; 1 bit per pixel
1 page ega 2 pages pcjr tandy

SCREEN 3 Low-res 16-colour pcjr tandy
160x200 pixels
20x25 characters of 8x8 pixels
16 attributes picked from 16 colours; 4 bits per pixel
2 pages

Statements

Language reference 239

SCREEN 3 Hercules monochrome hercules
720x348 pixels
80x25 characters of 9x14 pixels (with bottom line truncated by 2 px)
2 attributes; 1 bit per pixel
2 pages

SCREEN 3—255 Altissima risoluzione olivetti
640x400 pixels
80x25 characters of 8x16 pixels
2 attributes of which one picked from 16 colours; 2 bits per pixel
1 page

SCREEN 4 Med-res 4-colour pcjr tandy
320x200 pixels
40x25 characters of 8x8 pixels
4 attributes picked from 16 colours; 2 bits per pixel
2 pages

SCREEN 5 Med-res 16-colour pcjr tandy
320x200 pixels
40x25 characters of 8x8 pixels
16 attributes picked from 16 colours; 4 bits per pixel
1 page

Note: a minimum of 32768 bytes of video memory must be reserved to use this video
mode. Use the statement CLEAR ,,,32768! or the option video-memory=32768 .

SCREEN 6 High-res 4-colour pcjr tandy
640x200 pixels
80x25 characters of 8x8 pixels
4 attributes picked from 16 colours; 2 bits per pixel
1 page

Note: a minimum of 32768 bytes of video memory must be reserved to use this video
mode. Use the statement CLEAR ,,,32768! or the option video-memory=32768 .

SCREEN 7 EGA colour ega
320x200 pixels
40x25 characters of 8x8 pixels
16 attributes picked from 16 colours; 4 bits per pixel
8 pages

SCREEN 8 EGA colour ega
640x200 pixels
80x25 characters of 8x8 pixels

240 PC-BASIC

16 attributes picked from 16 colours; 4 bits per pixel
4 pages

SCREEN 9 EGA colour ega
640x350 pixels
80x25 characters of 8x14 pixels
16 attributes picked from 64 colours; 4 bits per pixel
2 pages

SCREEN 10 EGA monochrome ega monitor=mono
640x350 pixels
80x25 characters of 8x14 pixels
4 attributes picked from 9 pseudocolours; 2 bits per pixel
2 pages

NTSC Composite Colorburst
On CGA, Tandy and PCjr, colorburst has the following effects, depending on the type of
monitor - RGB (default) or composite:

mode colorburst CGA mode Effect (composite) Effect (RGB)
0 0 0, 2 greyscale default palette
0 1 1, 3 colour default palette
1 0 4 colour default palette
1 1 5 greyscale alternate palette

On SCREEN 2 , colorburst has no effect; on a composite monitor, colour artifacts can be
enabled on this screen through OUT (see there). On SCREEN 3 and up, colorburst has no
effect.

Erase
By default, if the mode changes or the colorburst changes between zero and non-zero,
the old page and the new page of the screen are cleared. On syntax={pcjr, tandy} , the
erase parameter can be used to change this behaviour. Its values are as follows:

erase Effect
0 Do not erase any screen page
1
(default)

If the mode changes or the colorburst changes between zero and non-zero, the
old page and the new page of the screen are cleared.

2 If the mode changes or the colorburst changes between zero and non-zero, all
pages of the screen are cleared.

Statements

Language reference 241

Notes
• At least one parameter must be specified.
• Composite colour artifacts are emulated only crudely in PC-BASIC, and not at all

in SCREEN 1 .

Errors
• No parameters are specified: Missing operand .
• Any parameter has a string value: Type mismatch .
• Any parameter is not in [-32768—32767] : Overflow .
• mode is not an available video mode number for your video card setting: Illegal

function call .
• vpage , apage are not between 0 and the number of pages for the chosen video

mode, less one: Illegal function call .
• colorburst is not in [0—255] : Illegal function call .
• erase is not in [0, 1, 2] : Illegal function call .

SHELL
SHELL [command]

Starts an operating system subshell on the console. If command is specified, the command is
executed on the shell and execution returns to the program.

To enable this statement, the shell option must be set to a valid command interpreter.

Parameters
• command is a string expression.

Notes
• Be careful when enabling this command, as it allows the running BASIC program

full access to your files and operating system.

Errors
• shell option is not specified: Illegal function call .
• command has a number value: Type mismatch .
• All output from the operating system subshell, including error messages, is

displayed on the PC-BASIC screen.

242 PC-BASIC

SOUND (tone)
SOUND frequency, duration [, volume [, voice]]

Produces a sound at frequency Hz for duration/18.2 seconds. On PCjr and Tandy, the
volume and voice channel can additionally be specified.

If PLAY "MB" has been executed, SOUND plays in the background. If PLAY "MF" has been
executed, sound plays in the foreground and the interpreter blocks until the sound is finished.
Foreground mode is default. Unlike PLAY , the sound played by the most recent SOUND
statement always plays in the background, even if PLAY "MF" has been entered. In
background mode, each SOUND statement counts as 1 toward the length of the queue
reported by the PLAY function.

Parameters
• frequency is a numeric expression in [37—32767] or 0 (for syntax={advanced

| pcjr}) or in [-32768—32767] (for syntax=tandy).
• duration is a numeric expression in [0—65535] .
• volume is a numeric expression in [-1—15] . 0 is silent, 15 is full volume; every

step less reduces the volume by 2 dB. -1 is also full volume. (For syntax={pcjr |
tandy}).

• voice is a numeric expression in [0—2] , indicating which of the three tone voice
channels is used for this sound. (For syntax={pcjr | tandy})

Notes
• On PCjr and Tandy, Frequencies below 110 Hz are played as 110 Hz.
• If duration is zero, any active background sound is stopped and the sound

queue is emptied.
• If duration is zero, volume and voice must not be specified.
• If duration is less than .022 but nonzero, the sound will be played in

background and continue indefinitely until another sound statement is executed.
This is also the behaviour for negative duration .

• If frequency equals 32767 or 0 , a silence of length duration is queued.

Errors
• Any argument has a string value: Type mismatch .
• frequency is not in its allowed range, and duration is not zero: Illegal

function call .
• duration is zero and more than two arguments are specified: Syntax error .
• syntax={ pcjr | tandy } is not set and more than two arguments are specified:

Statements

Language reference 243

Syntax error .
• frequency is not in [-32768—32767] : Overflow .
• duration is not in [-65535—65535] : Illegal function call .
• volume is not in [0—15] : Illegal function call .
• voice is not in [0—2] : Illegal function call .

SOUND (switch)
SOUND {ON|OFF}

Switches the external speaker on or off and toggles the availability of advanced sound
capabilities on PCjr and Tandy. This includes 3-voice sound, noise generation and volume
control. Clears the background music queue.

Notes
• Only available with syntax={pcjr | tandy} .
• On PC-BASIC, both the internal and the external speaker are emulated through

the same sound system.

Errors
• This statement is used and syntax={ pcjr | tandy } is not set: Syntax error .

STOP
STOP

Breaks program execution, prints a Break message on the console and returns control to
the user. Files are not closed. It is possible to resume program execution at the next
statement using CONT .

STRIG (switch)
STRIG {ON|OFF}

Has no effect.

244 PC-BASIC

STRIG (event switch)
STRIG[](button) {ON|OFF|STOP}

Switches event trapping of the joystick trigger button ON or OFF . STRIG (button) STOP
suspends event trapping until STRIG (button) ON is executed. Up to one event can be
triggered during suspension, provided that event handling was switched on prior to
suspension. The event triggered during suspension is handled immediately after the next
STRIG (button) ON statement.

button return value
0 1st joystick 1st trigger
2 2nd joystick 1st trigger
4 1st joystick 2nd trigger
6 2nd joystick 2nd trigger

Parameters
• button is a numeric expression in [0, 2, 4, 6] .

Errors
• button has a string value: Type mismatch .
• button is not in [-32768—32767] : Overflow .
• button is not in [0, 2, 4, 6] : Illegal function call .

Statements

Language reference 245

SWAP
SWAP var_0, var_1

Exchanges variables var_0 and var_1 .

Notes
• The variables are exchanged by reference. If, for example, var_0 is a FIELD

variable and var_1 is not, then SWAP will reverse those roles.

Parameters
• var_0 and var_1 are variables or array elements of the same type. var_1 must

have been previously defined.

Errors
• var_1 is undefined: Illegal function call . Note that no error is raised if

var_0 is undefined, and that after this error both variables will be defined.
• The types of var_0 and var_1 are not the same: Type mismatch .

SYSTEM
SYSTEM

Exits the interpreter.

Notes
• SYSTEM quits the PC-BASIC interpreter immediately without further interaction.

Any unsaved program or data will be lost.

TERM
TERM

Load and run the program defined by the term option. By default, as on the IBM PCjr, this is
a built-in serial terminal emulator application. This statement is only available with
syntax={pcjr|tandy} .

Errors
• If term is not set, this statement raises Internal error .
• If syntax is not set to pcjr or tandy , this keyword is not present. Calling TERM

will raise Syntax error .

246 PC-BASIC

TIME$ (statement)
TIME$ = time

Sets the current BASIC time to time .

Parameters
• Time is a string expression of the form "HH{:|.}mm{:|.}ss" where 0 <= HH <

24 , 0 <= mm < 60 and 0 <= ss < 60 . Each position may have one or two
characters.

Notes
• PC-BASIC stores an offset to the system time and uses this for future calls to

TIME$ and DATE$ functions in the same interpreter session. The system time is
not changed, unlike GW-BASIC under MS-DOS.

Errors
• time has a numeric value: Type mismatch .
• time is not of the correct form: Illegal function call .

TIMER (statement)
TIMER {ON|OFF|STOP}

• ON : enables ON TIMER event trapping of the timer clock.
• OFF : disables trapping.
• STOP : halts trapping until TIMER ON is used. Events that occur while trapping is

halted will trigger immediately when trapping is re-enabled.

TRON and TROFF
{TRON|TROFF}

Turns line number tracing on or off. If line number tracing is on, BASIC prints a tag [100] to
the console when program line 100 is executed, and so forth.

Notes
• Tracing is turned off by the NEW and LOAD statements.

Statements

Language reference 247

/home/rob/Projects/basic-project/www/pcbasic/doc/2.0/TIME$-function
/home/rob/Projects/basic-project/www/pcbasic/doc/2.0/DATE$-function

UNLOCK
UNLOCK [#] file_number [, record_0]

UNLOCK [#] file_number, [record_0] TO record_1

Unlocks a file or part of it that has previously been locked with LOCK .

Parameters
• file_number is a numeric expression in [0—255] .
• record_0 and record_1 are numeric expressions in [1—2^25-2] .

Errors
• Any parameter has a string value: Type mismatch .
• file_number is not in [-32768—32767] : Overflow .
• file_number is not in [0—255] : Illegal function call .
• file_number is not an open file: Bad file number .
• If file_number is open for RANDOM , LOCK and UNLOCK statements must match

in terms of record_0 and record_1 . An non-matching UNLOCK will raise
Permission denied .

• record_0 or record_1 is not in [1—2^25-2] : Bad record number .

248 PC-BASIC

VIEW
VIEW [[SCREEN] (x0, y0)-(x1, y1) [, [fill] [, border]]]

Defines a graphics viewport. Graphics drawn outside the viewport will not be shown. (x0,
y0) , (x1, y1) are absolute screen coordinates of two opposing corners of the area.

Unless SCREEN is specified, after a VIEW statement the coordinate system is shifted such
that (0, 0) becomes the top left coordinate of the viewport. If VIEW is called without
arguments, the viewport is reset to the whole screen.

Parameters
• fill is an attribute. The viewport will be filled with this attribute.
• border is an attribute. A border will be drawn just outside the viewport with this

attribute.

Errors
• Any of the parameters has a string value: Type mismatch .
• Any of the coordinates is not in [-32768—32767] : Overflow .
• Any of the coordinate pairs is outside the physical screen: Illegal function

call .

VIEW PRINT
VIEW PRINT top_row TO bottom_row

Defines the text scrolling area of the screen. LOCATE statements, cursor movement and
scrolling will be limited to the scrolling area.

Parameters
• top_row and bottom_row are numeric expressions in [1—24] .

Notes
• If syntax={pcjr | tandy} and KEY OFF is set, bottom_row may be 25.

Otherwise, screen row 25 cannot be part of the scrolling area.

Errors
• top_row or bottom_row is not in [1—24] : Illegal function call .

Statements

Language reference 249

WAIT
WAIT port, and_mask [, xor_mask]

Waits for the value of (INP(port) XOR xor_mask) AND and_mask to become nonzero. Event
handling is suspended until WAIT returns. If xor_mask is not specified, it defaults to 0 .

Notes
• A limited number of machine ports are emulated in PC-BASIC. See INP .

Errors
• Any parameter has a string value: Type mismatch .
• port is not in [-32768—65535] : Overflow .
• and_mask or xor_mask are not in [0—255] : Type mismatch .

WEND
WEND

Iterates a WHILE—WEND loop: jumps to the matching WHILE statement, where its condition
can be checked.

Notes
• WHILE—WEND loops can be nested. WEND jumps to the most recent WHILE

statement that has not been closed by another WEND .

Errors
• All previous WHILE statements have been closed by another WEND or no WHILE

statement has been executed before: WEND without WHILE .

250 PC-BASIC

WHILE
WHILE expr

Initiates a WHILE—WEND loop. If expr evaluates to zero, WHILE jumps to the statement
immediately after the matching WEND . If not, execution continues.

Parameters
• expr is a numeric expression.

Errors
• No matching WEND is found: WHILE without WEND .
• expr has a string value: Type mismatch .

Statements

Language reference 251

WIDTH (console)
WIDTH num_columns [, [num_rows] [,]]

Sets the screen width to 20, 40 or 80 columns.

Notes
• When changing screen width in graphics mode, the video mode is changed. The

following changes occur:
SCREEN 1 (40) ↔ SCREEN 2 (80)
SCREEN 7 (40) ↔ SCREEN 8 (80)
SCREEN 7 (40) ← SCREEN 9 (80)

• Screen width value 20 is only allowed on Tandy and PCjr. Changing to this width
changes to SCREEN 3 . Additionally, the following changes occur:
SCREEN 3 (20) → SCREEN 1 (40)
SCREEN 3 (20) → SCREEN 2 (80)
SCREEN 4 (40) → SCREEN 2 (80)
SCREEN 5 (40) ↔ SCREEN 6 (80)

Parameters
• num_columns is either a literal 20 , 40 or 80 or a numeric expression in

parentheses. The trailing comma is optional and has no effect.
• num_rows is optional and must equal 25. If syntax={pcjr | tandy} is set,

num_rows may be in [0—25] but its value is ignored.

Errors
• num_columns is a string expression: Type mismatch .
• num_columns is not in [-32768—32767] : Overflow .
• num_columns is not in [0—255] : Illegal function call .
• num_columns is not a literal and not bracketed: Illegal function call .
• num_rows is not in its accepted range: Illegal function call .

252 PC-BASIC

WIDTH (devices and files)
WIDTH {#file_num,|device_name,|LPRINT} num_columns

Sets the line width for a file or a device. When a write operation passes beyond the column
width, a CR LF sequence is inserted.

If a device is specified, it does not need to have a file open to it; the width setting will be the
default width next time a file is opened to that device.

If device_name is "LPT1:" or LPRINT is specified, the device width setting affects LPRINT
and LLIST .

If device_name is "SCRN:" , "KYBD:" , or omitted, the screen width is changed. In this case,
num_columns must be one of 20, 40 or 80. See the notes at WIDTH (console) for side

effects.

Parameters
• file_num is a numeric expression which is the number of an open file.
• device_name is a string expression that is one of "KYBD:" , "SCRN:" , "LPT1:" ,

"LPT2:" , "LPT3:" , "COM1:" , "COM2:" , "CAS1:"
• num_columns is a numeric expression.

Errors
• device_name is not one of the allowed devices: Bad file name .
• device_name is "SCRN:" , "KYBD:" and num_columns is not 20, 40 or 80:

Illegal function call .
• file_num or num_columns are strings: Type mismatch .
• file_num or num_columns are not in [-32768—32767] : Overflow .
• file_num or num_columns are not in [0—255] : Illegal function call .
• file_num is not an open file: Bad file mode .

Statements

Language reference 253

WINDOW
WINDOW [[SCREEN] (x0, y0)-(x1, y1)]

Define logical coordinates for the viewport. If SCREEN is not specified, the bottom left of the
screen is mapped to the lower coordinates; the top right of the screen is mapped to the
higher coordinates. If SCREEN is specified, the top left of the screen is mapped to the lower
coordinates; the bottom right of the screen is mapped to the higher coordinates.

If WINDOW is called without arguments, the logical coordinates are reset to the viewport
coordinates.

Parameters
• x0 , y0 , x1 , y1 are numeric expressions.

Errors
• Any of the coordinates have a string value: Type mismatch .
• x0 = x1 or y0 = y1 : Illegal function call .

WRITE
WRITE [# file_num,] [expr_0 [{,|;} expr_1] ...]

Writes values to a file or the screen in machine-readable form. Values are separated by
commas and the line is ended with a CR LF sequence. Strings are delimited by double
quotes " . No padding spaces are inserted.

When writing to the screen, the same control characters are recognised as for the PRINT
statement.

Parameters
• expr_0, expr_1, ... are expressions whose value is to be printed.

Errors
• file_num has a string value: Type mismatch .
• file_num is open for INPUT : Bad file mode .

254 PC-BASIC

6.8. Errors and Messages

Errors

Errors and Messages

Language reference 255

1 NEXT without FOR

A NEXT statement has been encountered for which no matching FOR can be found.

2 Syntax error

The BASIC syntax is incorrect. A statement or expression has been mistyped or
called in one of many incorrect ways. This error is also raised on a DATA line if a
READ statement encounters a data entry of an incorrect format.

3 RETURN without GOSUB

A RETURN statement has been encountered for which no GOSUB call has been made.

4 Out of DATA

A READ statement is attempting to read more data entries than can be found from
the current DATA location onward.

5 Illegal function call

A statement, function or operator has been called with parameters outside the
accepted range. This error is also raised for a large variety of other conditions –
check the reference for the statement or function called.

6 Overflow

A numeric expression result or intermediate value is too large for the required
number format.

7 Out of memory

There is not enough free BASIC memory to complete the operation. Too much
memory is consumed by the program; variables, arrays and strings, or execution
stacks for loops, subroutines or user-defined functions.

8 Undefined line number

A reference is made to a line number that does not exist in the program.

9 Subscript out of range

An array index (subscript) is used that is outside the range reserved for that array
by the DIM statement.

10 Duplicate Definition

256 PC-BASIC

A DIM statement is used on an array that has been dimensioned before (either
implicitly or explicitly) or OPTION BASE is called in a way that conflicts with an earlier
implicit or explicit definition of the starting index.

11 Division by zero

An attempt is made to divide a number by zero or by a number that is too small to
distinguish from zero within the number format's precision.

12 Illegal direct

A DEF FN statement is being used in direct mode.

13 Type mismatch

The expression used is of a type that cannot be converted to the required type for
the function or statement. Most commonly, this is raised if a string argument is
supplied to a statement or function that expects a number, or vice versa.

14 Out of string space

There is not enough free BASIC memory to store the string variable.

15 String too long

A string expression result or intermediate value is longer than 255 characters.

16 String formula too complex
17 Can't continue

The CONT statement is used in circumstances where continuing program execution
is not possible.

18 Undefined user function

The FN function is called with a function name for which no definition was made by
a DEF FN statement.

19 No RESUME

The program terminates inside an error trapping routine that has not been closed
with RESUME or END.

20 RESUME without error

A RESUME statement is encountered while the program is not executing an error
trapping routine.

Errors and Messages

Language reference 257

21 unused
22 Missing operand

An operator expression misses an operand or a function or statement is not
supplied with sufficient parameters.

23 Line buffer overflow

An INPUT or LINE INPUT statement encountered an input string longer than 255
characters or the plain-text program file being loaded by LOAD, CHAIN or MERGE
contains a line with more than 255 characters. Attempting to load a text file that
has LF rather than CR LF line endings may cause this error.

24 Device Timeout

The handshake has failed on a serial device or a tape device has reached the end
of tape.

25 Device Fault
26 FOR without NEXT

A FOR statement has been encountered for which no matching NEXT statement can
be found.

27 Out of paper

An attempt is made to write to a printer which is out of paper or to another parallel
device which has raised an out-of-paper condition.

28 unused
29 WHILE without WEND

A WHILE statement has been encountered for which no matching WEND statement
can be found.

30 WEND without WHILE

A WEND statement has been encountered for which no matching WHILE statement
can be found.

31—49 unused
50 FIELD overflow

An attempt is made to read, write, or define a FIELD variable beyond the length of
the random-access file buffer.

258 PC-BASIC

51 Internal error

The TERM statement is executed but no terminal manager program has been
defined.

52 Bad file number

A file number is accessed to which no file is open, or the file number used in an
OPEN statement is outside the range of allowable file numbers, or (confusingly) the
file specification is empty, malformed or contains illegal characters.

53 File not found

A named file on a disk device cannot be found.

54 Bad file mode

The requested file mode in an OPEN statement does not exist or is unsupported for
the given device, or the file function called is not supported for this device, or the
function or statement called requires a file opened for RANDOM and the file is not.

55 File already open

An attempt is made to open a file to a file number that is already in use; or an
attempt is made to open a file for OUTPUT or APPEND on a serial, disk or cassette
device when a file (or, on a disk device, a file with the same name) is already
open for OUTPUT or APPEND on that device; or a KILL or NAME statement is
executed on a disk file when a file with the same name is open on the same
device.

56 unused
57 Device I/O error

An I/O error has occured during input/output to a device. This includes faming
errors, CRC check failures and unexpected end-of-tape on cassette devices.

58 File already exists

The proposed new name of a disk file in a NAME statement is already in use.

59—60 unused
61 Disk full

There is insufficient free space on the disk device to complete the operation.

62 Input past end

Errors and Messages

Language reference 259

An attempt is made to retrieve input from a file that has passed its end of file.

63 Bad record number

A random-access file record number is referenced that is outside the permitted
range.

64 Bad file name

The file name or other device parameter string in a file specification is malformed
or contains illegal characters.

65 unused
66 Direct statement in file

A line with no line number is encountered in a plain-text program file.

67 Too many files
68 Device Unavailable

An attempt is made to access a device that does not exist or is not enabled.

69 Communication buffer overflow

A serial device is receiving more data than fits in its buffer.

70 Permission Denied

The requested access to a file is not granted due to LOCK restrictions, operating
system locking, or insufficient operating system file permissions.

71 Disk not Ready

The disk device is not ready for access. For example, there is no diskette in a
floppy drive or the drive lock is open.

72 Disk media error
73 Advanced Feature
74 Rename across disks

An attempt is made to use the NAME statement to move a file from one disk device
to another.

75 Path/File access error

An attempt is made to create a directory that already exists or to remove a
directory that is not empty.

260 PC-BASIC

76 Path not found

An OPEN, MKDIR, RMDIR, or CHDIR statement is executed referring to a (parent) path
that does not exist on the disk device.

77 Deadlock

Any error code that does not have a message associated to it will generate the message
Unprintable error .

If an error occurs in direct mode, the error message is printed as above. If the error occurs in
a program, the message is supplemented with the line number in which the error occurred.
For example,

Illegal function call in 100
indicates that the illegal function call took place in line number 100 .

If a Syntax error occurs during program execution, the error message is followed by a
listing of the program line in which the error occurred, wth the cursor positioned at the
location where the error was raised.

A Division by zero error or, in a floating point calculation, an Overflow , will not interrupt
execution unless it occurs within an error handling routine. The error message will be printed
on the console and the result of the offending calculation will be taken to be the maximum
value that fits in the appropriate floating-point variable. Overflow in an integer calculation
will always interrupt execution like other errors.

Other messages
Break

Execution of a compound statement or program has been interrupted by a CONT
statement or by a user keyboard interrupt (such as Ctrl + Break). If the interrupt
happens in a program, the Break message will be supplemented with the line
number in which the interrupt occurred.

?Redo from start
The input provided on the console for an INPUT statement does not match the
expected format. The number or type of inputs is not correct. Re-enter all inputs.

Undefined line ref_num in line_num

The RENUM statement encountered a reference to the line number ref_num which is
not defined in the program. The reference occurs on line number line_num . The
undefined line number reference will not be renumbered.

Errors and Messages

Language reference 261

filename Found.
A file matching the requested specification has been found on the cassette device.
This message only occurs in direct mode.

filename Skipped.
A file not matching the requested specification has been encountered on the cassette
device. This message only occurs in direct mode.

262 PC-BASIC

7. Technical reference

Errors and Messages

Technical reference 263

7.1. Tokenised file format
A tokenised program file on a disk device has the following format.

Magic byte
FF

Program lines
Each line is stored as follows:

Bytes Format Meaning
2 Unsigned

16-bit little-
endian
integer.

Memory location of the line following the current one.
This is used internally by GW-BASIC but ignored when
a program is loaded.

2 Unsigned
16-bit little-
endian
integer.

The line number.

Variable Tokenised
BASIC, see
below.

The contents of the line.

1 00 (NUL byte) End of line marker.

End of file marker
An 1A is written to mark the end of file. This is optional; the file will be read without
problems if it is omitted.

Tokenised BASIC
The printable ASCII characters in the range 20 — 7E are used for string literals, comments,
variable names, and elements of statement syntax that are not reserved words. Reserved
words are represented by their reserved word tokens and numeric literals are represented by
numeric token sequences.

Numeric token sequences
Numeric literals are stored in tokenised programs according to the following representation.
All numbers are positive; negative numbers are stored simply by preceding the number with
EA , the token for - .

264 PC-BASIC

Class Bytes Format
Indirect line
numbers

3 0E followed by an unsigned 16-bit little-endian integer.

Octal integers 3 0B followed by an unsigned 16-bit little-endian integer.
Hexadecimal
integers

3 0C followed by an unsigned 16-bit little-endian integer.

Positive decimal
integers less than
11

1 Tokens 11—1B represent 0—10.

Positive decimal
integers less than
256

2 0F followed by an unsigned 8-bit integer.

Other decimal
integers

3 1C followed by a two's complement signed 16-bit little-
endian integer. GW-BASIC will recognise a negative
number encountered this way but it will not store negative
numbers itself using the two's complement, but rather by
preceding the positive number with EA.

Single precision
floating-point
number

5 1D followed by a four-byte single in Microsoft Binary
Format.

Double precision
floating-point
number

9 1F followed by an eight-byte double in Microsoft Binary
Format.

Keyword tokens
Most keywords in PC-BASIC are reserved words. Reserved words are represented in a
tokenised program by a single- or double-byte token. The complete list is below.

All function names and operators are reserved words and all statements start with a reserved
word (which in the case of LET is optional). However, the converse is not true: not all
reserved words are statements, functions, or operators. For example, TO and SPC(only
occur as part of a statement syntax. Furthermore, some keywords that form part of statement
syntax are not reserved words: examples are AS , BASE , and ACCESS .

Keywords that are not reserved words are spelt out in full text in the tokenised source.

A variable or user-defined function name must not be identical to a reserved word. The list
below is an exhaustive list of reserved words that can be used to determine whether a name
is legal.

81 END 82 FOR 83 NEXT

Tokenised file format

Technical reference 265

84 DATA 85 INPUT 86 DIM
87 READ 88 LET 89 GOTO
8A RUN 8B IF 8C RESTORE
8D GOSUB 8E RETURN 8F REM
90 STOP 91 PRINT 92 CLEAR
93 LIST 94 NEW 95 ON
96 WAIT 97 DEF 98 POKE
99 CONT 9C OUT 9D LPRINT
9E LLIST A0 WIDTH A1 ELSE
A2 TRON A3 TROFF A4 SWAP
A5 ERASE A6 EDIT A7 ERROR
A8 RESUME A9 DELETE AA AUTO
AB RENUM AC DEFSTR AD DEFINT
AE DEFSNG AF DEFDBL B0 LINE
B1 WHILE B2 WEND B3 CALL
B7 WRITE B8 OPTION B9 RANDOMIZE
BA OPEN BB CLOSE BC LOAD
BD MERGE BE SAVE BF COLOR
C0 CLS C1 MOTOR C2 BSAVE
C3 BLOAD C4 SOUND C5 BEEP
C6 PSET C7 PRESET C8 SCREEN
C9 KEY CA LOCATE CC TO
CD THEN CE TAB(CF STEP
D0 USR D1 FN D2 SPC(
D3 NOT D4 ERL D5 ERR
D6 STRING$ D7 USING D8 INSTR
D9 ' DA VARPTR DB CSRLIN
DC POINT DD OFF DE INKEY$
E6 > E7 = E8 <
E9 + EA - EB *
EC / ED ^ EE AND
EF OR F0 XOR F1 EQV
F2 IMP F3 MOD F4 \
FD81 CVI FD82 CVS FD83 CVD
FD84 MKI$ FD85 MKS$ FD86 MKD$
FD8B EXTERR FE81 FILES FE82 FIELD
FE83 SYSTEM FE84 NAME FE85 LSET
FE86 RSET FE87 KILL FE88 PUT
FE89 GET FE8A RESET FE8B COMMON

266 PC-BASIC

FE8C CHAIN FE8D DATE$ FE8E TIME$
FE8F PAINT FE90 COM FE91 CIRCLE
FE92 DRAW FE93 PLAY FE94 TIMER
FE95 ERDEV FE96 IOCTL FE97 CHDIR
FE98 MKDIR FE99 RMDIR FE9A SHELL
FE9B ENVIRON FE9C VIEW FE9D WINDOW
FE9E PMAP FE9F PALETTE FEA0 LCOPY
FEA1 CALLS FEA5 PCOPY FEA7 LOCK
FEA8 UNLOCK FF81 LEFT$ FF82 RIGHT$
FF83 MID$ FF84 SGN FF85 INT
FF86 ABS FF87 SQR FF88 RND
FF89 SIN FF8A LOG FF8B EXP
FF8C COS FF8D TAN FF8E ATN
FF8F FRE FF90 INP FF91 POS
FF92 LEN FF93 STR$ FF94 VAL
FF95 ASC FF96 CHR$ FF97 PEEK
FF98 SPACE$ FF99 OCT$ FF9B LPOS
FF9A HEX$ FF9C CINT FF9D CSNG
FF9E CDBL FF9F FIX FFA0 PEN
FFA1 STICK FFA2 STRIG FFA3 EOF
FFA4 LOC FFA5 LOF

The following additional reserved words are activated by the option syntax={pcjr|tandy} .

FEA4 NOISE FEA6 TERM

Internal use tokens
The tokens 10 , 1E and 0D are known to be used internally by GW-BASIC. They should
not appear in a correctly stored tokenised program file.

Microsoft Binary Format
Floating point numbers in GW-BASIC and PC-BASIC are represented in Microsoft Binary
Format (MBF), which differs from the IEEE 754 standard used by practically all modern
software and hardware. Consequently, binary files generated by either BASIC are fully
compatible with each other and with some applications contemporary to GW-BASIC, but not
easily interchanged with other software. QBASIC, for example, uses IEEE floats.

Tokenised file format

Technical reference 267

MBF differs from IEEE in the position of the sign bit and in using only 8 bits for the exponent,
both in single- and in double-precision. This makes the range of allowable numbers in an
MBF double-precision number smaller, but their precision higher, than for an IEEE double:
an MBF single has 23 bits of precision, while an MBF double has 55 bits of precision. Both
have the same range.

Unlike IEEE, the Microsoft Binary Format does not support signed zeroes, subnormal
numbers, infinities or not-a-number values.

MBF floating point numbers are represented in bytes as follows:

Single M3 M2 M1 E0

Double M7 M6 M5 M4 M3 M2 M1 E0

Here, E0 is the exponent byte and the other bytes form the mantissa, in little-endian order so
that M1 is the most significant byte. The most significant bit of M1 is the sign bit, followed by
the most significant bits of the mantissa: M1 = s0 f1 f2 f3 f4 f5 f6 f7. The other bytes contain the
less-significant mantissa bits: M2 = f8 f9 fA fB fC fD fE fF, and so on.

The value of the floating-point number is v = 0 if E0 = 0 and v = (-1) s0 × mantissa × 2 E0 - 128

otherwise, where the mantissa is formed as a binary fraction mantissa = 0 . 1 f1 f2 f3 ...

268 PC-BASIC

7.2. Protected file format
The protected format is an encrypted form of the tokenised format. GW-BASIC would refuse
to show the source code of such files. This protection scheme could easily be circumvented
by changing a flag in memory. Deprotection programs have circulated widely for decades
and the decryption algorithm and keys were published in a mathematical magazine.

A protected program file on a disk device has the following format.

Magic byte
FE

Payload
Encrypted content of a tokenised program file, including its end of file marker but
excluding its magic byte. The encription cipher rotates through an 11-byte and a
13-byte key so that the resulting transformation is the same after 143 bytes. For each
byte,

• Subtract the corresponding byte from the 11-byte sequence
0B 0A 09 08 07 06 05 04 03 02 01

• Exclusive-or with the corresponding byte from the 11-byte key
1E 1D C4 77 26 97 E0 74 59 88 7C

• Exclusive-or with the corresponding byte from the 13-byte key
A9 84 8D CD 75 83 43 63 24 83 19 F7 9A

• Add the corresponding byte from the 13-byte sequence
0D 0C 0B 0A 09 08 07 06 05 04 03 02 01

End of file marker
An 1A is written to mark the end of file. This is optional; the file will be read without
problems if it is omitted. Since the end-of-file marker of the tokenised program is
included in the encrypted content, a protected file is usually one byte longer than its
unprotected equivalent.

Protected file format

Technical reference 269

7.3. BSAVE file format
A memory-dump file on a disk device has the following format.

Magic byte
FD

Header

Bytes Format Meaning
2 Unsigned 16-bit little-endian

integer.
Segment of the memory block.

2 Unsigned 16-bit little-endian
integer.

Offset of the first byte of the memory
block.

2 Unsigned 16-bit little-endian
integer.

Length of the memory block in bytes.

Payload
The bytes of the memory block.

Footer
On Tandy only, the magic byte and the six bytes of the header are repeated here.
This is optional; the file will be read without problems if it is omitted.

End of file marker
An 1A is written to mark the end of file. This is optional; the file will be read without
problems if it is omitted.

270 PC-BASIC

7.4. Cassette file format
Files on cassette are stored as frequency-modulated sound. The payload format of files on
cassette is the same as for files on disk device, but the headers are different and the files
may be split in chunks.

Modulation
A 1-bit is represented by a single 1 ms wave period (1000 Hz). A 0-bit is represented by a
single 0.5 ms wave period (2000 Hz).

Byte format
A byte is sent as 8 bits, most significant first. There are no start- or stopbits.

Record format
A file is made up of two or more records. Each record has the following format:

Length Format Meaning
256
bytes

All FF 2048 ms pilot wave at 1000 Hz, used for
calibration.

1 bit 0 Synchronisation bit.
1 byte 16 (SYN) Synchronisation byte.
256
bytes

Data block.

2 bytes Unsigned 16-bit big-endian
integer

CRC-16-CCITT checksum.

31 bits 30 1s followed by a 0. End of record marker.

Tokenised, protected and BSAVE files consist of a header record followed by a single record
which may contain multiple 256-byte data blocks, each followed by the 2 CRC bytes. Plain
text program files and data files consist of a header record followed by multiple single-block
records.

Cassette file format

Technical reference 271

Header block format

Bytes Format Meaning
1 A5 Header record magic byte
8 8 characters Filename.
1 File type. 00 for data file, 01 for memory dump, 20 or A0 for

protected, 40 for plain text program, 80 for tokenised
program.

2 Unsigned 16-bit
little-endian
integer

Length of next data record, in bytes.

2 Unsigned 16-bit
little-endian
integer

Segment of memory location.

2 Unsigned 16-bit
little-endian
integer

Offset of memory location.

1 00 End of header data
239 All 01 Filler

Data block format

Bytes Format Meaning
1 8-bit

unsigned
integer

Number of payload bytes in last record, plus one. If zero, the next
record is not the last record.

255 Payload data. If this is the last record, any unused bytes are filled
by repeating the last payload byte.

272 PC-BASIC

7.5. Emulator file formats
PC-BASIC uses a number of file formats to support its emulation of legacy hardware, which
are documented in this section. These file formats are not used by GW-BASIC or
contemporary software.

HEX font file format
The HEX file format for bitfonts was developed by Roman Czyborra for the GNU Unifont
package. PC-BASIC uses an extended version of this file format to store its fonts.

A HEX file is an ASCII text file, consisting of lines terminated by LF . Each line of this file is
one of the following:

• Empty
• A comment, starting with a # character.
• One or more 4 or 6-character hexadecimal Unicode code points, separated by

commas, followed by a colon, followed by a hexadecimal number representing the
glyph. A 64-hexdigit or longer number represents a fullwidth (16xN) glyph, with
each row of 16 pixels represented by four hexadecimal digits. A shorter number
represents a halfwidth (8xN) glyph, with each row of 8 pixels represented by two
hexadecimal digits.

UCP code page file format
Unicode-codepage mappings are stored in UCP files.

A UCP file is an ASCII text file, consisting of lines terminated by LF . Each line of this file is
one of the following:

• Empty
• A comment, starting with a # character.
• A 2- or 4-character hexadecimal codepage point, followed by a colon, followed by

a comma-separated list of 4- or 6-character hexadecimal Unicode code points. If
more than one Unicode code point is provided for a codepage point, the code
points combine into a single glyph.

Emulator file formats

Technical reference 273

CAS tape file format
A CAS file is a bit-level representation of cassette data introduced by the PCE emulator.
CAS-files produced by PC-BASIC start with the characters PC-BASIC tapeEOF . This
sequence is followed by seven 0 bits, followed by the tape contents. The seven zero bits are
intended to ensure that the tape contents are byte-aligned; the one bit is made up by the
synchronisation bit following the pilot wave.

Note that PC-BASIC does not require the introductory sequence to read a CAS-file correctly,
nor does it require the contents of a CAS-file to be byte-aligned. However, new files
produced by PC-BASIC follow this convention.

274 PC-BASIC

7.6. Character codes
Depending on context, PC-BASIC will treat a code point in the control characters range as a
control character or as a glyph defined by the active codepage which by default is codepage
437. Code points of &h80 or higher are always interpreted as a codepage glyph.

ASCII
This is a list of the American Standard Code for Information Interchange (ASCII). ASCII only
covers 128 characters and defines the code point ranges &h00 – &h1F and &h7F as control
characters which do not have a printable glyph assigned to them. This includes such values
as the Carriage Return (CR) character that ends a program line.

In the context of this documentation, character &h1A (SUB) will usually be indicated as
EOF since it plays the role of end-of-file marker in DOS.

_0 _1 _2 _3 _4 _5 _6 _7 _8 _9 _A _B _C _D _E _F
0_ NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO SI

1_ DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US

2_ ! " # $ % & ' () * + , - . /
3_ 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
4_ @ A B C D E F G H I J K L M N O
5_ P Q R S T U V W X Y Z [\] ^ _
6_ ` a b c d e f g h i j k l m n o
7_ p q r s t u v w x y z { | } ~ DEL

Codepage 437
This table shows the characters that are produced by the 256 single-byte code points when
the DOS Latin USA codepage 437 is loaded, which is the default. Other codepages can be
loaded to assign other characters to these code points.

• Code point &h00 cannot be redefined.
• Redefining characters in the printable ASCII code point range &h20 – &h7E will

result in a different glyph being shown on the screen, but the character will
continue to be treated as the corresponding ASCII character. It will retain its ASCII
value when transcoded into UTF-8. This happens, for example, with the Yen sign
(¥) which is assigned to ASCII code point &h5C in code page 932: in that

Character codes

Technical reference 275

codepage it is treated as if it were a backslash (\).
• All other characters can be redefined by loading another codepage with the

codepage option. This will affect both the visual glyphs and Unicode character
values of those characters.

_0 _1 _2 _3 _4 _5 _6 _7 _8 _9 _A _B _C _D _E _F
0_ ☺ ☻ ♥ ♦ ♣ ♠ • ◘ ○ ◙ ♂ ♀ ♪ ♫ ☼
1_ ► ◄ ↕ ‼ ¶ § ▬ ↨ ↑ ↓ → ← ∟ ↔ ▲ ▼
2_ ! " # $ % & ' () * + , - . /
3_ 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
4_ @ A B C D E F G H I J K L M N O
5_ P Q R S T U V W X Y Z [\] ^ _
6_ ` a b c d e f g h i j k l m n o
7_ p q r s t u v w x y z { | } ~ ⌂
8_ Ç ü é â ä à å ç ê ë è ï î ì Ä Å
9_ É æ Æ ô ö ò û ù ÿ Ö Ü ¢ £ ¥ ₧ ƒ
A_ á í ó ú ñ Ñ ª º ¿ ⌐ ¬ ½ ¼ ¡ « »
B_ ░ ▒ ▓ │ ┤ ╡ ╢ ╖ ╕ ╣ ║ ╗ ╝ ╜ ╛ ┐
C_ └ ┴ ┬ ├ ─ ┼ ╞ ╟ ╚ ╔ ╩ ╦ ╠ ═ ╬ ╧
D_ ╨ ╤ ╥ ╙ ╘ ╒ ╓ ╫ ╪ ┘ ┌ █ ▄ ▌ ▐ ▀
E_ α ß Γ π Σ σ µ τ Φ Θ Ω δ ∞ φ ε ∩
F_ ≡ ± ≥ ≤ ⌠ ⌡ ÷ ≈ ° ∙ ∙ √ ⁿ ² ■

276 PC-BASIC

7.7. Keycodes

Scancodes
PC-BASIC uses PC/XT scancodes, which originated on the 83-key IBM Model F keyboard
supplied with the IBM PC 5150. The layout of this keyboard was quite distinct from modern
standard keyboards with 101 or more keys, but keys on a modern keyboard produce the
same scancode as the key with the same function on the Model F. For example, the key that
(on a US keyboard) produces the \ was located next to the left Shift key on the Model F
keyboard and has scancode &h2B . The (US) backslash key still has this scancode, even
though it is now usually found above the Enter key.

To further complicate matters, keyboards for different locales have their layout remapped in
software rather than in hardware, which means that they produce the same scancode as the
key that on a US keyboard is in the same location, regardless of which character they
actually produce.

Therefore, the A on a French keyboard will produce the same scancode as the Q on a UK
or US keyboard. The aforementioned US \ key is identified with the key that is generally
found to the bottom left of Enter on non-US keyboards. For example, on my UK keyboard
this is the # key. Non-US keyboards have an additional key next to the left Shift which on
the UK keyboard is the \ . Therefore, while this key is in the same location and has the
same function as the Model F \ , it has a different scancode.

In the table below, the keys are marked by their function on a US keyboard, but it should be
kept in mind that the scancode is linked to the position, not the function, of the key.

Keycodes

Technical reference 277

Key Scancode
Esc 01
1 ! 02
2 @ 03
3 # 04
4 $ 05
5 % 06
6 ^ 07
7 & 08
8 * 09
9 (0A
0) 0B
- _ 0C
= + 0D
Backspace 0E
Tab 0F
q Q 10
w W 11
e E 12
r R 13
t T 14
y Y 15
u U 16
i I 17
o O 18
p P 19
[{ 1A
] } 1B
Enter 1C
Ctrl 1D
a A 1E
s S 1F
d D 20
f F 21
g G 22

278 PC-BASIC

h H 23
j J 24
k K 25
l L 26
; : 27
' " 28
` ~ 29
Left Shift 2A
\ | 2B
z Z 2C
x X 2D
c C 2E
v V 2F
b B 30
n N 31
m M 32
, < 33
. > 34
/ ? 35
Right Shift 36
keypad * Print Screen 37
Alt 38
Space 39
Caps Lock 3A
F1 3B
F2 3C
F3 3D
F4 3E
F5 3F
F6 40
F7 41
F8 42
F9 43
F10 44
Num Lock 45

Keycodes

Technical reference 279

Scroll Lock Pause 46
keypad 7 Home 47
keypad 8 ↑ 48
keypad 9 Pg Up 49
keypad - 4A
keypad 4 ← 4B
keypad 5 4C
keypad 6 → 4D
keypad + 4E
keypad 1 End 4F
keypad 2 ↓ 50
keypad 3 Pg Dn 51
keypad 0 Ins 52
keypad . Del 53
SysReq 54
\ | (Non-US 102-key) 56
F11 57
F12 58
Left Logo (Windows 104-key) 5B
Right Logo (Windows 104-key) 5C
Menu (Windows 104-key) 5D
????/???? Hiragana/Katakana (Japanese 106-key) 70
\ _ (Japanese 106-key) 73
?? Henkan (Japanese 106-key) 79
??? Muhenkan (Japanese 106-key) 7B
??/?? Hankaku/Zenkaku (Japanese 106-key) 29
¥ | (Japanese 106-key) 7D
?? Hanja (Korean 103-key) F1
?/? Han/Yeong (Korean 103-key) F2
\ ? ° (Brazilian ABNT2) 73
keypad . (Brazilian ABNT2) 7E

280 PC-BASIC

e-ASCII codes
Alongside scancodes, most keys also carry a character value the GW-BASIC documentation
calls extended ASCII. Since this is a rather overloaded term, we shall use the abbreviation e-
ASCII exclusively for these values. The values returned by the INKEY$ function are e-ASCII
values.

e-ASCII codes are one or two bytes long; single-byte codes are simply ASCII codes whereas
double-byte codes consist of a NUL character plus a code indicating the key pressed. Some,
but certainly not all, of these codes agree with the keys' scancodes.

Unlike scancodes, e-ASCII codes of unmodified keys and those of keys modified by Shift ,
Ctrl or Alt are all different.

Unmodified, Shift ed and Ctrl ed e-ASCII codes are connected to a key's meaning, not its
location. For example, the e-ASCII for Ctrl + a are the same on a French and a US
keyboard. By contrast, the Alt ed codes are connected to the key's location, like scancodes.
The US keyboard layout is used in the table below.

Keycodes

Technical reference 281

Key e-ASCII e-ASCII Shift e-ASCII Ctrl e-ASCII Alt

Esc 1B 1B 1B
1 ! 31 21 00 78
2 @ 32 40 00 03 00 79
3 # 33 23 00 7A
4 $ 34 24 00 7B
5 % 35 25 00 7C
6 ^ 36 5E 1E 00 7D
7 & 37 26 00 7E
8 * 38 2A 00 7F
9 (39 28 00 80
0) 30 29 00 81
- _ 2D 5F 1F 00 82
= + 3D 2B 00 83
Backspace 08 08 7F 00 8C
Tab 09 00 0F 00 8D 00 8E
q Q 71 51 11 00 10
w W 77 57 17 00 11
e E 65 45 05 00 12
r R 72 52 12 00 13
t T 74 54 14 00 14
y Y 79 59 19 00 15
u U 75 55 15 00 16
i I 69 49 09 00 17
o O 6F 4F 0F 00 18
p P 70 50 10 00 19
[{ 5B 7B 1B
] } 5D 7D 1D
Enter 0D 0D 0A 00 8F
a A 61 41 01 00 1E
s S 73 53 13 00 1F
d D 64 44 04 00 20
f F 66 46 06 00 21
g G 67 47 07 00 22
h H 68 48 08 00 23

282 PC-BASIC

j J 6A 4A 0A 00 24
k K 6B 4B 0B 00 25
l L 6C 4C 0C 00 26
; : 3B 3A
' " 27 22
` ~ 60 7E
\ | 5C 7C 1C
z Z 7A 5A 1A 00 2C
x X 78 58 18 00 2d
c C 63 43 03 00 2E
v V 76 56 16 00 2F
b B 62 42 02 00 30
n N 6E 4E 0E 00 31
m M 6D 4D 0D 00 32
, < 2C 3C
. > 2E 3E
/ ? 2F 3F
Print Screen 00 72 00 46
Space 20 20 20 00 20
F1 00 3B 00 54 00 5E 00 68
F2 00 3C 00 55 00 5F 00 69
F3 00 3D 00 56 00 60 00 6A
F4 00 3E 00 57 00 61 00 6C
F5 00 3F 00 58 00 62 00 6D
F6 00 40 00 59 00 63 00 6E
F7 00 41 00 5A 00 64 00 6F
F8 00 42 00 5B 00 65 00 70
F9 00 43 00 5C 00 66 00 71
F10 00 44 00 5D 00 67 00 72
F11 (Tandy) 00 98 00 A2 00 AC 00 B6
F12 (Tandy) 00 99 00 A3 00 AD 00 B7
Home 00 47 00 47 00 77
End 00 4F 00 4F 00 75
PgUp 00 49 00 49 00 84
PgDn 00 51 00 51 00 76

Keycodes

Technical reference 283

↑ 00 48 00 48
← 00 4B 00 87 00 73
→ 00 4D 00 88 00 74
↓ 00 50 00 50
keypad 5 35 35 05
Ins 00 52 00 52
Del 00 53 00 53

284 PC-BASIC

7.8. Memory model
PC-BASIC (rather imperfectly) emulates the memory of real-mode MS-DOS. This means that
memory can be addressed in segments of 64 KiB. Each memory address is given by the
segment value and the 0--65535 byte offset with respect to that segment. Note that
segments overlap: the actual memory address is found by segment*16 + offset . The
maximum memory size that can be addressed by this scheme is thus 1 MiB, which was the
size of the conventional and upper memory in real-mode MS-DOS.

Overview
Areas of memory with a special importance are:

Segment Name Purpose
&h0000 Low memory Holds machine information, among other things
&h13AD (may vary) Data segment Program code, variables, arrays, strings
&hA000 (EGA)
&hB000 (MDA)
&hB800 (CGA)

Video segment Text and graphics on visible and virtual screens

&hC000 -- RAM font definition, among other things
&hF000 Read-only memory ROM font definition, among other things

Data segment
The data segment is organised as follows. The addresses may vary depending on the
settings of various options; given here are the default values for GW-BASIC 3.23.

Memory model

Technical reference 285

Offset Size (bytes) Function
&h0000 3429 Interpreter workarea. Unused in PC-BASIC; can be adjusted

with the --reserved-memory option.
&h0D65 (max-

files+1) *
322

File blocks: one for the program plus one for each file allowed
by --max-files.

&h126D 3 + c Program code. An empty program uses 3 bytes.
&h1270 +
c

v Scalar variables.

&h1270 +
c + v

a Array variables.

&hFDFC -
s

a String variables, filled downward from &hFDFC

&hFDFC 512 BASIC stack, size set by CLEAR statement.
&hFFFE Top of data segment, set by CLEAR statement.

286 PC-BASIC

8. Developer's guide
The features described in this guide are intended for Python developers only. They are
experimental, may not work as expected, and may be removed from future releases without
warning. You may not be able to get help if you have any problems. Luckily, none of the
features described here are needed for the normal functioning of PC-BASIC.

Memory model

Developer's guide 287

8.1. Session API
PC-BASIC can be loaded as a package from Python, which makes it possible to call BASIC
code directly from Python.

class Session(**kwargs)
Open a PC-BASIC session. The session object holds the interpreter state, e.g. the value of
variables, program code and pointers, screen state, etc. Note that Session can be used as
a context manager with the with statement.

Keyword arguments are largely (but not entirely) analogous to PC-BASIC command-line
options.

By default, the Session object grabs the standard input and output as keyboard an screen.
This may be undesirable in some applications; in such cases, set the keyword arguments
input_streams and output_streams explicitly (for example, to None).

execute(basic_code)
Execute BASIC code. basic_code can be commands or program lines, separated by \n or
\r .

evaluate(basic_expr)
Evaluate a BASIC expression and return its value as a Python value. For type converson
rules, see get_variable.

set_variable(name, value)
Set the value of a scalar or array to a Python value.

name is a valid BASIC name, including the sigil, and is not case-sensitive. If the target is an
array, name should end with () .

value should be of a compatible type: int , bool or float for numeric variables and
bytes or unicode for strings. If the target is an array, value should be a list of such

values. Multi-dimensional arrays should be specified as nested list s.

bool s will be represented as in BASIC, with -1 for True . unicode will be converted
according to the active codepage.

288 PC-BASIC

get_variable(name)
Retrieve the value of a scalar or array as a Python value.

name is a valid BASIC name, including the sigil, and is not case-sensitive. If the target is an
array, name should end with () .

Integers will be returned as int , single- and double-precision values as float , and string
as bytes . If the target is an array, the function returns a (nested) list of such values.

close()
Close the session: closes all open files and exits PC-BASIC. If used as a context manager,
this method is called automatically.

Session API

Developer's guide 289

8.2. Extensions
It's possible to enable your own BASIC statements using extensions. An extension is a
Python object or module loaded through the --extension option or through the extension
parameter of the Session object.

Python functions and other callable objects in the extension's namespace will be made
accessible through basic as extension statements or functions whose name starts with an
underscore _

In order for this to work, the function must have a name that is also a valid BASIC variable
name: alphanumeric only, no underscores, not equal to a BASIC keyword. The name will be
case-insensitive in BASIC; that is, def mytestfunc(): print 1 and def myTestFunc():
print 2 both map to the extension statement or function _MYTESTFUNC . Which one of these
functions would be chosen is not defined, so avoid this situation.

Any arguments provided to the extension statement or function are supplied to the Python
function as the corresponding type: BASIC integers become int s, single- and double-
precision numbers become float s and strings become bytes (not unicode and no
codepage conversions are applied).

For example, a call to _MYTESTFUNC 5, "test-string" would expect to find a Python function
mytestfunc(i, s) with two parameters, and will supply i=int(5) and a=bytes('test-
string') .

The same Python function can also be called as an extension function, e.g. A =
_MYTESTFUNC(5, "test-string") . If called as a function, mytestfunc(i, s) must return a
value that is one of int , float , both of which will be converted to a BASIC double-
precision float; bool , which will be converted to a BASIC integer; or bytes or unicode ,
which will be converted to a BASIC string.

290 PC-BASIC

8.3. Examples
import pcbasic

import random

with pcbasic.Session(extension=random) as s:

s.execute('a=1')

print s.evaluate('string$(a+2, "@")')

s.set_variable('B$', 'abcd')

s.execute('''

10 a=5

20 print a

run

_seed(42)

b = _uniform(a, 25.6)

print a, b

''')

Examples

Developer's guide 291

9. Acknowledgements

292 PC-BASIC

9.1. Contributors
PC-BASIC would not exist without those contributing code, reporting bugs, sending in
patches, and documenting GW-BASIC's behaviour. Thank you all!

Development is led by

• Rob Hagemans

Bug fixes and guidance by

• Wengier Wu
• Jan Bredenbeek
• WJB
• Rutger van Bergen
• Daniel Santana

Avid testers and bug hunters

• Ronald Herrera
• Kenneth Wayne Boyd
• Nauman Umer
• Steve Pagliarulo
• Miguel Dorta
• Patrik
• Duane
• Justin R. Miller

Contributors

Acknowledgements 293

9.2. Shoulders of Giants
PC-BASIC incorporates code derived from other projects, in particular:

• Marcus von Appen's PySDL2
• Jonathan Hartley's colorama
• Valentin Lab's win_subprocess.py

PC-BASIC depends on the following open-source projects:

• Python
• Setuptools
• Simple DirectMedia Layer (SDL)
• SDL2_gfx
• pysdl2-dll
• PySerial
• PyParallel
• PyAudio

294 PC-BASIC

https://pysdl2.readthedocs.org/en/latest/
https://github.com/tartley/colorama
https://gist.github.com/vaab/2ad7051fc193167f15f85ef573e54eb9
http://www.python.org/
https://pypi.python.org/pypi/setuptools
http://www.libsdl.org/
http://www.ferzkopp.net/wordpress/2016/01/02/sdl_gfx-sdl2_gfx/
https://github.com/a-hurst/pysdl2-dll
https://github.com/pyserial/pyserial
https://github.com/pyserial/pyparallel
http://people.csail.mit.edu/hubert/pyaudio/

9.3. Fond memories
PC-BASIC would not have been what it is without the following open-source projects which it
has depended on in the past:

• Tom Rothamel's PyGame Subset for Android (superseded by RAPT)
• J-L Morel's Win32::Console::ANSI
• Python for Windows Extensions (PyWin32)
• PExpect
• PyGame
• NumPy

Fond memories

Acknowledgements 295

https://web.archive.org/web/20150712040220/http://pygame.renpy.org/
http://www.renpy.org/doc/html/android.html
http://search.cpan.org/~jlmorel/Win32-Console-ANSI-1.11/lib/Win32/Console/ANSI.pm
https://sourceforge.net/projects/pywin32/
http://pexpect.readthedocs.org/en/latest/
http://www.pygame.org/
http://www.numpy.org/

9.4. Technical Documentation
Building PC-BASIC would have been impossible without the immense amounts of technical
documentation that has been made available online. It has proven not to be feasible to
compile a complete list of the documentation used. Many thanks to all those who make
technical information freely available, and apologies to those whose contribution I have failed
to acknowledge here.

GW-BASIC tokenised file format
• Norman De Forest's seminal documentation of GW-BASIC tokens. This

documentation was the starting point for the development of PC-BASIC.
• Dan Vanderkam's online GW-BASIC decoder

GW-BASIC protected file format
• Paul Kocher, The Cryptogram computer supplement 19, American Cryptogram

Association, Summer 1994

Technical information on many topics
• VOGONS
• Erik S. Klein's vintage computer forums
• John Elliott's Vintage PC pages
• Peter Berg's Pete's QBasic/QuickBasic site
• Vernon Brooks's PC-DOS retro

Video hardware
• Dan Rollins' TechHelp pages on PC video memory layout
• Great Hierophant's Nerdly Pleasures Blog

Microsoft Binary Format
• Forum contributions by Julian Brucknall and Adam Burgoyne

Data cassette format
• Mike Brutman's Analysis of the IBM PC data cassette format
• Dan Tobias' IBM PC data cassette format documentation

Serial ports
• Craig Peacock's documentation on interfacing the serial port
• Christopher E. Strangio's tutorial on the RS232 standard
• QB64 documentation

296 PC-BASIC

http://www.chebucto.ns.ca/~af380/GW-BASIC-tokens.html
http://www.danvk.org/wp/2008-02-03/reading-old-gw-basic-programs/
http://www.vogons.org/
http://www.vintage-computer.com/
http://www.seasip.info/VintagePC/
http://www.petesqbsite.com/
https://sites.google.com/site/pcdosretro/
http://webpages.charter.net/danrollins/techhelp/0089.HTM
http://nerdlypleasures.blogspot.com/
http://www.boyet.com/Articles/MBFSinglePrecision.html
http://www.experts-exchange.com/Programming/Languages/Pascal/Delphi/Q_20245266.html
http://www.brutman.com/Cassette_Waveforms/Cassette_Waveforms.html
http://fileformats.archiveteam.org/wiki/IBM_PC_data_cassette
http://retired.beyondlogic.org/serial/serial.htm
http://www.camiresearch.com/Data_Com_Basics/RS232_standard.html
http://www.qb64.net/wiki/index.php/Port_Access_Libraries#Serial_Communication_Registers

Keyboard scancodes
• John Savard's Scan Codes Demystified
• Andries Brouwer's extensive reference of Keyboard scancodes
• Philip Storr's PC Hardware book
• Altek Instruments documentation on PC Keyboard Scan Codes

Technical Documentation

Acknowledgements 297

http://www.quadibloc.com/comp/scan.htm
https://www.win.tue.nl/~aeb/linux/kbd/scancodes.html
http://www.philipstorr.id.au/pcbook/book3/scancode.htm
http://www.barcodeman.co.uk/altek/mule/scandoc.php

9.5. Fonts
• Henrique Peron's CPIDOS codepage pack
• Dmitry Bolkhovityanov's Uni-VGA font
• Roman Czyborra, Qianqian Fang and others' GNU UniFont
• DOSBox VGA fonts
• Andries Brouwer's CPI font file format documentation

298 PC-BASIC

http://www.freedos.org/software/?prog=cpidos
http://www.inp.nsk.su/~bolkhov/files/fonts/univga/
https://savannah.gnu.org/projects/unifont
http://www.dosbox.com/
http://www.win.tue.nl/~aeb/linux/kbd/font-formats-3.html

9.6. Unicode-codepage mappings
• The Unicode Consortium and contributors
• GNU libiconv Project
• Aivosto
• Konstantinos Kostis' Charsets Index
• IBM CDRA
• Masaki Tojo's Camellia

Unicode-codepage mappings

Acknowledgements 299

http://www.unicode.org/Public/MAPPINGS/VENDORS
https://www.gnu.org/software/libiconv/
http://www.aivosto.com/vbtips/charsets-codepages.html
http://www.kostis.net/charsets/
http://www-01.ibm.com/software/globalization/cdra/
https://github.com/mtojo/camellia

9.7. Bibliography
• GW-BASIC 3.23 User's Guide, Microsoft Corporation, 1987.
• IBM Personal Computer Hardware Reference Library: BASIC, IBM, 1982.
• Tandy 1000 BASIC, A Reference Guide, Tandy Corporation.
• William Barden, Jr., Graphics and Sound for the Tandy 1000s and PC

Compatibles, Microtrend, 1987.
• Don Inman and Bob Albrecht, The GW-BASIC Reference, Osborne McGraw-Hill,

1990.
• Thomas C. McIntyre, BLUE: BASIC Language User Essay, 1991, available

online.
• David I. Schneider, Handbook of BASIC: Third Edition for the IBM PC, XT, AT,

PS/2, and Compatibles, Brady, 1988.

300 PC-BASIC

https://web.archive.org/web/20060410121551/http://scottserver.net/basically/geewhiz.html
https://web.archive.org/web/20060410121551/http://scottserver.net/basically/geewhiz.html

9.8. Development tools
Development tools:

• Git
• Atom
• PyLint
• Coverage
• Ubuntu
• The GNU Base System

Documentation tools:

• LXML
• Markdown
• Prince

Packaging tools:

• Wheel
• Twine
• cx_Freeze
• fpm

Source code and releases are hosted on:

• GitHub
• SourceForge
• PyPI

Development tools

Acknowledgements 301

https://git-scm.com/
https://atom.io/
https://pypi.python.org/pypi/pylint/1.7.6
https://pypi.python.org/pypi/coverage
http://www.ubuntu.com/
http://www.gnu.org/
http://lxml.de/
https://pypi.python.org/pypi/Markdown
https://www.princexml.com/download/
https://pypi.python.org/pypi/wheel
https://pypi.python.org/pypi/twine
https://anthony-tuininga.github.io/cx_Freeze/
https://github.com/jordansissel/fpm
https://github.com/
https://sourceforge.net/
https://pypi.org/project/pcbasic/

9.9. Emulators
These excellent emulators have been indispensable tools in documenting the behaviour of
various Microsoft BASIC dialects.

• DOSBox
• MESS
• PCE PC Emulator

302 PC-BASIC

http://www.dosbox.com/
http://www.mess.org/
http://www.hampa.ch/pce/

Licences

Emulators

Licences 303

PC-BASIC interpreter
Copyright © 2013—2022 Rob Hagemans.

Source code available at https://github.com/robhagemans/pcbasic.

This program is free software: you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation, either version 3
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this
program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301 USA.

304 PC-BASIC

https://github.com/robhagemans/pcbasic
http://www.gnu.org/licenses/gpl-3.0.en.html

PC-BASIC documentation
Copyright © 2014—2022 Rob Hagemans.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International
License.

PC-BASIC documentation

Licences 305

http://creativecommons.org/licenses/by-sa/4.0/legalcode
http://creativecommons.org/licenses/by-sa/4.0/legalcode

	PC-BASIC documentation
	PC-BASIC 2.0.7
	Table of Contents
	Quick Start Guide
	Installation
	BASIC survival kit
	Program location
	External resources

	User's guide
	The working environment
	Special keys
	Keyboard shortcuts
	Alternative keys
	Clipboard operations
	Emulator control keys
	Compatibility

	Programs and files
	Accessing your drives
	Compatible BASIC files
	Packages
	Cassette tapes
	Security

	Connecting to peripherals
	Printing
	Serial and parallel ports

	Changing the interface
	Emulation targets
	GW-BASIC compatibility features

	Codepages
	Fonts
	Redirecting I/O
	Command-line interface
	Text-based interface

	Configuration guide
	Changing settings
	Command-line options
	Configuration files

	Synopsis
	Positional arguments
	Options
	Examples

	Language guide
	Working with programs
	Control flow
	Arrays and variables
	Type conversion
	String operations
	Text and the screen
	The printer
	Keyboard input
	Function-key macros
	Calculations and maths
	Mathematical functions
	Random numbers

	Devices and files
	File operations
	Devices

	Graphics
	Sound
	Joystick and pen
	Disks and DOS
	Serial communications
	Event handling
	Error handling
	User-defined functions
	Date and time
	Including data in a program
	Memory and machine ports
	Features not yet implemented
	Unsupported features

	Language reference
	Metasyntax
	Definitions
	Literals
	String literals
	Numeric literals

	Variables
	Types and sigils
	Arrays
	Conversions

	Operators
	Order of precedence
	Examples
	Errors

	Mathematical operators
	Notes
	Errors

	Relational operators
	Bitwise operators
	Errors

	String operators
	Errors

	Functions
	ABS
	Parameters

	ASC
	Parameters
	Errors

	ATN
	Parameters
	Notes
	Errors

	CDBL
	Errors

	CHR$
	Parameters
	Errors

	CINT
	Errors

	COS
	Parameters
	Notes
	Errors

	CSNG
	Errors

	CSRLIN
	Notes

	CVI
	Parameters
	Errors

	CVS
	Parameters
	Errors

	CVD
	Parameters
	Errors

	DATE$ (function)
	Notes

	ENVIRON$
	Parameters
	Errors

	EOF
	Notes
	Errors

	ERDEV
	Notes

	ERDEV$
	Notes

	ERL
	Notes

	ERR
	Notes

	EXP
	Parameters
	Notes
	Errors

	EXTERR
	Parameters
	Notes
	Errors

	FIX
	Parameters
	Notes
	Errors

	FN
	Parameters
	Errors

	FRE
	Parameters

	HEX$
	Parameters
	Errors

	INKEY$
	Notes

	INP
	Parameters
	Notes
	Errors

	INPUT$
	Parameters
	Notes
	Errors

	INSTR
	Parameters
	Notes
	Errors

	INT
	Parameters
	Notes

	IOCTL$
	Notes
	Errors

	LEFT$
	Parameters
	Notes
	Errors

	LEN
	Parameters
	Errors

	LOC
	Parameters
	Notes
	Errors

	LOF
	Parameters
	Notes
	Errors
	Notes

	LOG
	Parameters
	Notes
	Errors

	LPOS
	Parameters
	Notes
	Errors

	MID$ (function)
	Parameters
	Errors

	MKD$
	Errors

	MKI$
	Errors

	MKS$
	Errors

	OCT$
	Parameters
	Errors

	PEEK
	Parameters
	Notes
	Errors

	PEN (function)
	Parameters
	Notes
	Errors

	PLAY (function)
	Parameters
	Notes
	Errors

	PMAP
	Parameters
	Notes
	Errors

	POINT (current coordinate)
	Parameters
	Notes
	Errors

	POINT (pixel attribute)
	Parameters
	Notes
	Errors

	POS
	Parameters

	RIGHT$
	Parameters
	Errors

	RND
	Parameters
	Notes
	Errors

	SCREEN (function)
	Parameters
	Errors
	Notes

	SGN
	Parameters
	Errors

	SIN
	Parameters
	Notes
	Errors

	SPACE$
	Parameters
	Errors

	SQR
	Parameters
	Notes
	Errors

	STICK
	Parameters
	Errors

	STR$
	Parameters
	Errors

	STRIG (function)
	Parameters
	Notes
	Errors

	STRING$
	Parameters
	Errors

	TAN
	Parameters
	Notes
	Errors

	TIME$ (function)
	Notes

	TIMER (function)
	Notes

	USR
	Parameters
	Notes
	Errors

	VAL
	Notes
	Errors

	VARPTR
	Parameters
	Notes
	Errors

	VARPTR$
	Notes
	Errors

	Statements
	AUTO
	Parameters
	Errors

	BEEP
	Errors

	BEEP (switch)
	Notes

	BLOAD
	Parameters
	Errors

	BSAVE
	Parameters
	Errors

	CALL and CALLS
	Notes
	Parameters
	Errors

	CHAIN
	Parameters
	Notes
	Errors

	CHDIR
	Parameters
	Errors

	CIRCLE
	Parameters
	Notes
	Errors

	CLEAR
	Parameters
	Notes
	Errors

	CLOSE
	Parameters
	Notes
	Errors

	CLS
	Parameters
	Errors

	COLOR (text mode)
	Parameters
	Textmode attributes (colour)
	Textmode attributes (monochrome)
	Notes
	Errors

	COLOR (SCREEN 1)
	CGA palettes
	Notes
	Errors

	COLOR (SCREEN 3—9)
	Parameters
	EGA default palette
	EGA colour list
	Notes
	Errors

	COM
	Parameters
	Errors

	COMMON
	Parameters
	Notes

	CONT
	Notes
	Errors

	DATA
	Parameters
	Notes
	Errors

	DATE$ (statement)
	Notes
	Errors

	DEF FN
	Notes
	Parameters
	Errors

	DEFINT, DEFDBL, DEFSNG, DEFSTR
	Parameters
	Notes

	DEF SEG
	Parameters
	Notes
	Errors

	DEF USR
	Parameters
	Notes
	Errors

	DELETE
	Parameters
	Errors

	DIM
	Parameters
	Notes
	Errors

	DRAW
	Graphics Macro Language reference
	Notes
	Errors

	EDIT
	Errors

	ELSE
	END
	ENVIRON
	Parameters
	Errors

	ERASE
	Parameters
	Errors

	ERROR
	Parameters
	Errors

	FIELD
	Notes
	Parameters
	Errors

	FILES
	Parameters
	Notes
	Errors

	FOR
	Parameters
	Errors

	GET (files)
	Parameters
	Notes
	Errors

	GET (communications)
	Parameters
	Notes
	Errors

	GET (graphics)
	Parameters
	Notes
	Errors

	GOSUB
	Parameters
	Notes
	Errors

	GOTO
	Parameters
	Notes
	Errors

	IF
	Parameters
	Notes
	Errors

	INPUT (console)
	Parameters
	Notes
	Errors

	INPUT (files)
	Parameters
	Notes
	Errors

	IOCTL
	Notes
	Errors

	KEY (macro list)
	KEY (macro definition)
	Parameters
	Notes
	Errors

	KEY (event switch)
	Parameters
	Notes
	Errors

	KEY (event definition)
	Parameters
	Notes
	Errors

	KILL
	Parameters
	Notes
	Errors

	LCOPY
	Parameters
	Notes
	Errors

	LET
	Parameters
	Errors

	LINE
	Parameters
	Notes
	Errors

	LINE INPUT (console)
	Parameters
	Notes

	LINE INPUT (files)
	Parameters
	Notes
	Errors

	LIST
	Notes
	Parameters
	Errors

	LLIST
	Notes
	Parameters
	Errors

	LOAD
	Parameters
	Errors

	LOCATE
	Notes
	Errors

	LOCK
	Parameters
	Notes
	Errors

	LPRINT
	LSET
	Parameters
	Notes
	Errors

	MERGE
	Parameters
	Errors

	MID$ (statement)
	Parameters
	Notes
	Errors

	MKDIR
	Parameters
	Errors

	MOTOR
	Parameters
	Notes
	Errors

	NAME
	Parameters
	Notes
	Errors

	NEW
	NEXT
	Parameters
	Errors

	NOISE
	Parameters
	Notes
	Errors

	ON (calculated jump)
	Parameters
	Errors

	ON (event trapping)
	Notes
	Errors

	ON ERROR
	Parameters
	Notes
	Errors

	OPEN
	Parameters
	Access modes
	Sharing and locks
	File specifications
	Compatibility notes
	Notes
	Errors

	OPTION BASE
	Parameters
	Notes
	Errors

	OUT
	Notes
	Parameters
	Errors

	PAINT
	Parameters
	Tile patterns
	Boundaries
	Errors

	PALETTE
	Parameters
	Errors

	PALETTE USING
	Parameters
	Notes
	Errors

	PCOPY
	Parameters
	Errors

	PEN (statement)
	PLAY (event switch)
	PLAY (music statement)
	Parameters
	Music Macro Language reference
	Notes and Pauses
	Timing commands
	Background-mode commands
	Subroutine command
	Volume control
	MML Parameters

	Errors

	POKE
	Parameters
	Notes
	Errors

	PSET and PRESET
	Parameters
	Errors

	PRINT and LPRINT
	Format string syntax
	Parameters
	Notes
	Errors

	PUT (files)
	Parameters
	Notes
	Errors

	PUT (communications)
	Notes
	Errors

	PUT (graphics)
	Parameters
	Errors

	RANDOMIZE
	Parameters
	Notes
	Errors

	READ
	Parameters
	Errors

	REM
	RENUM
	Notes
	Errors

	RESET
	Notes

	RESTORE
	Errors

	RESUME
	Errors

	RETURN
	Errors

	RMDIR
	Parameters
	Errors

	RSET
	Parameters
	Notes
	Errors

	RUN
	Parameters
	Errors

	SAVE
	Parameters
	Errors

	SCREEN (statement)
	Parameters
	Video modes
	NTSC Composite Colorburst
	Erase
	Notes
	Errors

	SHELL
	Parameters
	Notes
	Errors

	SOUND (tone)
	Parameters
	Notes
	Errors

	SOUND (switch)
	Notes
	Errors

	STOP
	STRIG (switch)
	STRIG (event switch)
	Parameters
	Errors

	SWAP
	Notes
	Parameters
	Errors

	SYSTEM
	Notes

	TERM
	Errors

	TIME$ (statement)
	Parameters
	Notes
	Errors

	TIMER (statement)
	TRON and TROFF
	Notes

	UNLOCK
	Parameters
	Errors

	VIEW
	Parameters
	Errors

	VIEW PRINT
	Parameters
	Notes
	Errors

	WAIT
	Notes
	Errors

	WEND
	Notes
	Errors

	WHILE
	Parameters
	Errors

	WIDTH (console)
	Notes
	Parameters
	Errors

	WIDTH (devices and files)
	Parameters
	Errors

	WINDOW
	Parameters
	Errors

	WRITE
	Parameters
	Errors

	Errors and Messages
	Errors
	Other messages

	Technical reference
	Tokenised file format
	Tokenised BASIC
	Numeric token sequences
	Keyword tokens
	Internal use tokens

	Microsoft Binary Format

	Protected file format
	BSAVE file format
	Cassette file format
	Modulation
	Byte format
	Record format
	Header block format
	Data block format

	Emulator file formats
	HEX font file format
	UCP code page file format
	CAS tape file format

	Character codes
	ASCII
	Codepage 437

	Keycodes
	Scancodes
	e-ASCII codes

	Memory model
	Overview
	Data segment

	Developer's guide
	Session API
	class Session(**kwargs)
	execute(basic_code)
	evaluate(basic_expr)
	set_variable(name, value)
	get_variable(name)
	close()

	Extensions
	Examples

	Acknowledgements
	Contributors
	Shoulders of Giants
	Fond memories
	Technical Documentation
	GW-BASIC tokenised file format
	GW-BASIC protected file format
	Technical information on many topics
	Video hardware
	Microsoft Binary Format
	Data cassette format
	Serial ports
	Keyboard scancodes

	Fonts
	Unicode-codepage mappings
	Bibliography
	Development tools
	Emulators

	Licences
	PC-BASIC interpreter
	PC-BASIC documentation

